数学乘方教学思想总结(系列十四篇)_数学乘方教学思想总结
时间:2022-04-10 作者:工作计划之家数学乘方教学思想总结(系列十四篇)。
⬢ 数学乘方教学思想总结
再做一组练习(出示投影3)计算:(1),,;
(2),,;
(3),,.
学生活动:学生在练习本上独立完成后,同桌交换,互相纠正.然后,教师引导学生纵向观察(1)题和(2)题的形式和计算结果有什么区别?中底数是-3,而题中,底数是3.因此,.可见,以负数作为底数时,这个负数必加括号,而不加括号的底数一定不是负数.
师:哪位同学能用乘方的一般式说明这个问题呢?
生:的底数是,表示个相乘,是的相反数,这就是与的区别.
师:引导学生观察(3)题,与两者从意义上截然不同:
,而.因此,要特别注意:当底数是分数时,这个分数一定要加括号,不加括号的底数不是分数.计算带分数的乘方一般应化为假分数.
【教法说明】同桌之间相互纠正,有时比师生之间的纠正效果会更好.通过学生实际计算、纠错,让他们自己体会到负数与分数的'乘方要加括号.这样,学生自己获得的知识和方法,理解得更深刻,并能灵活运用.
(三)变式训练,培养能力
(出示投影4)
计算:
(1),,,,;
(2),,,;
(3),,,.
【教法说明】练习题的设计分层次,既注重基础知识,又注重了能力的培养,组织课内练习,获取学生掌握知识的反馈信息,对于学生存在的问题及时回授.
(四)课堂小结
师:今天我们一起学习了有理数的乘方.有理数的乘方运算可以利用有理数的乘法运算来进行.乘方与乘法有联系也有区别:联系是乘方本质是乘法,区别是乘方中积的因数要相同.为了更好地理解这一点,我们看下面的对比:
(出示投影5)
作乘法运算看 作乘方运算看
2×2×2=8
因数是2 底数是2
因数的个数为3指数是3
积是8幂是8
【教法说明】小结揭示出乘方与乘法这两个知识点的联系,并找出它们之间的共同点和不同点,使学生将乘方知识与头脑中乘法的认识结构建立联系,从而形成新的知识体系.
(五)思考题
(出示投影6)
1.3的平方是多少?-3的平方是多少?平方得9的数有几个?有没有平方得-9的有理数?
2.已知,则.
3.计算.
【教法说明】这组题目是让学有余力的学生应有所追求,进一步激发学生探索的热情,有利于发展他们的数学才能.2题是非负数和有理数乘方两知识点的综合应用,有助于培养学生分析问题和解决问题的能力.3题向学生渗透分类讨论的思想.
八、随堂练习
1.判断题
(1)中底数是,指数是2( )
(2)一个有理数的平方总是大于0的( )
(3)( )
(4)( )
(5)( )
(6)若,则( )
(7)当时,( )
(8)平方等于本身的数是0和1( )
2.填空题
(1)的意义是__________________,结果为________________;
(2)的意义是__________________,结果为________________;
(3)若且,则;
(4)若,则,,;
(5)平方小于10的整数有__________个,其和为___________,积为___________.
九、布置作业
课本第113页4、5.
十、板书设计
⬢ 数学乘方教学思想总结
摘要:小学是我国教育系统的重要组成部分,同时也是我国教育系统的基础,小学教育的质量将会影响到学生学习能力的培养,进而影响到学生以后的学习。
数学是一门比较重要的学科。
在小学阶段,大部分的学生都是刚开始正式接触数学学科,而数学知识的逻辑性又比较强,比较抽象,从而会使得一部分学生感觉到比较吃力。
鉴于此,在小学数学教学过程中应结合小学生的生理特点和心理特点采用数形结合的教学思想,提高学生数学学习的效果。
⬢ 数学乘方教学思想总结
方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的意义。在初中数学中,方程与函数是极为重要的内容,对各类方程和简单函数都作较为系统的学习研究。对一个较为复杂的问题,常常只须寻找等量关系,列出一个或几个方程(方程组)或函数关系式,就能很好地得到解决。
例如,某灯具店采购了一批某种型号的节能灯,共用去400元。在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。
⬢ 数学乘方教学思想总结
在新课程理念的指导下,我设计并实施了《有理数的乘方》这节课的教学,感触很深。在关注学生小组合作参与学习的过程中,发现学生的想像力极为丰富,学生很有潜质,只要教师充当学生学习活动中平等的指导者、促进者,让学生真正成为实践探索者、知识构建者、愉快的收获者,这种新型的师生关系一定会促使学生思维得到发展,能力得到提高。我更加理解了“创造性地使用教材”和“真正地以学生为本”的理念,深感这种理念在教学实践中落实的必要性、艰巨性。任重而道远,我将把科学探索贯穿于教学始终,与学生共同发展。
⬢ 数学乘方教学思想总结
1、在新课的情境创设教学中,我利用剪纸与切图让学生的学习兴趣和思考习性得到调动,在通俗生动的生活实例中,学生既可操作也可想象出可以运用的知识,由浅入深地进行阶梯式教学,从而为新知的探究与归纳做好铺垫。在这一环节中,学生的学习兴趣得到了激发,课堂氛围深厚,达到乐中求学的目的。
2、在积的乘方运算法则的学习中,设计由数到字母的算式的计算,让学生探究数学知识由具体到抽象,步步发现计算的规律,从而验证出法则的存在的合理性,满足了学生学习思维的可接受力和可塑造性。学生在这布局中能够发挥个人的能力,对法则的归纳轻松得手。
3、在积的乘方法则的运用中,既练习常规类型习题,又增加公式的逆用习题,环环紧扣,增强了学生的全面发展能力。同时对问题的解答方式既采用口答、抢答,又进行个人独立完成,也运用小组合作,个人讲解的方式,让学生在多种学习方式中学会了知识,掌握了方法,提高了能力,发展了个性。
⬢ 数学乘方教学思想总结
本节课从生活实际出发,根据乘法的意义,具体地阐述了乘方的概念,在教学过程中应用了“自主—合作—讨论—探究—交流”的教学方法,教师始终发挥学生的主体作用,起到一个“引导—帮助—点拨”的作用,较好地做到了由单纯的知识传递者转变为学生学习数学的组织者、引导者和合作者。
优点:为了体现课堂以学生为主,培养学生自主探究的能力和知识的熟练运用,在课前的教学设计中尽量围绕学生展开。如:
1、使每个学生参与课堂,采用集体讨论和交流的形式,将个人的经验或成果展示出来,弥补一个教师难以面向众多有差异的学生的不足。在本课中,有很多活动都是采用小组合作的形式,组织学生展开分小组合作讨论活动,要求所有同学把自己的想法都在小组里交流。这样尽可能地将每个人的收获变成学生集体的共同精神财富。
2、在备课中,我认真备了学生,预设了学生会出现的问题。例如:如何调动学生的积极性?如果我提问“乘方运算与乘法运算有什么关系?”学生能否回答这个问题,不能回答时,我该怎么引导?
3、在教学过程中,创设实际问题情境,激发学生兴趣,是一节课成功的一半。一开始,我给学生用生活问题导入新课,提出问题:如果一层楼按高3米计算,把足够长的厚0.1毫米的纸连续折叠20次约有104米高,有34层楼高;连续折叠30次后有10万多米高,有12个珠穆朗玛峰高。你相信吗?由此导入新课,激发了学生强烈的好奇心和求知欲;我通过多折纸活动,让学生观察纸的层数的变化过程,列式表示层数,引出乘方的概念;还组织学生观察比较一些算式,猜想得到其中的乘方运算法则.教学时,多次提醒学生:负数的乘方,分数的乘方,在书写时一定要把整个负数(连同符号)分数用小括号括起来;让学生通过观察特例,自己总结规律,学生在计算时出现了各种各样的问题,延缓了教学进程。主要问题有:分数的乘方与分子的乘方也很混淆;还有对有理数的乘法运算,甚至小学的乘法运算学生掌握得不牢固。
4、教学中,我们要特别强调,强化训练。
(1)注意区别(-2)3和-23区别。前者代表3个(-2)相乘,后者代表2×2×2的相反数。念法前者可以念做“负2的三次方”,后者可以念做“2的三次方的相反数”。
(2)为培养学生的数学思维能力,拓宽学生视野,我特意设计了[链接生活]环节,让学生运用所学知识来解决实际问题。
总之,本节课学生对新知的掌握情况较好,有效地完成了教学目标。通过本课我深深感觉到,教师要调动学生的主动性,正确地认识课堂教学中的师生交流,摒弃虚假,追求真实,努力实施“自主、合作、探究”课堂教学改革,实现课堂教学师生交往的有效化,努力提高课堂教学的效率。
不足:在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及同年组教师的指点,主要表现在:
(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。综合应用部分的练习题处理得很仓促,例题讲解不够细致,板书不够。
(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。分工不够明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。
(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。
(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。
⬢ 数学乘方教学思想总结
小 学数学教学大纲的指导思想?
概括地讲,制订新大纲的指导思想是:全面提高学生的素质,促进学生个性才能的发展。《中华人民共和国义务教育法》提出:“义务教育必须贯彻国家的教育方针,努力提高教育质量,使儿童、少年在品德、智力、体质等方面全面发展,为提高全民族的素质,培养有理想、有道德、有文化、有纪律的社会主义建设人才奠定基础。”制订义务教育小学数学教学大纲要全面贯彻这一精神。
二、怎样才能达到小学数学教学的总目的?
(1)选择学习与科学现代化相关的基础知识,做到理论联系实际(2)使学生充分认识到学习数学的重要性
三、小学数学教学目的是什么? ①使学生学好基础知识。
②培养与发展学生的能力,注意培养学生的计算能力,培养逻辑思维能力,发展学生的空间观念,运用所学知识解决实际问题的能力。③使学生受到思想品德教育
四、确定小学数学教学内容的原则是什么?(1)依据数学课程目标。
②满足学生需要,促进学生发展
③反映社会进步和数学学科自身的发展
五、小学数学教材中为什么要渗透现代化教学思想?是怎么样渗透的?
①因为教材中渗透集合、函数、统计等现代数学思想,有利于学生对知识面的加深,对某些内容的理解,有利于进一步学习数学和现代科学技术
②方法:根据小学生特点,采取适合小学生的直观教学形式,让学生直观数学直接感受并积累一些现代数学思想的感性知识。
六、小学数学教学内容编排的原则是什么?(同四)
七、小学数学在培养计算能力方面有哪些要求?怎么样才能达到这些要求?
①小学数学应培养学生整数、小数、分数的四则运算能力。并要求达到正确迅速,同时注意计算方法的合理灵活,培养学生良好的计算习惯
②应做到:a、让学生掌握整数、小数、分数的运算定律、性质、法则等有关计算的基础知识b、训练学生经常使用简单、合理的计算c、让学生记、一些基本的、常用的数学运算、提高计算速度d、围绕重点与难点、教学的重点与内容有直接关系到教学知识进一步掌握。
八、什么是逻辑思维?怎样培养学生的逻辑思维?
①所谓逻辑思维,就是有条理的前后连贯的、有规律的、有根有据的认识活动过程
②要求做到:a、创设教学情境,让学生在具体情境中求知b、鼓励学生独立思考,引导学生自由探索、合作交流c、强化学生语言表达训练、培养学生的思维能力d、总之,培养小学生的逻辑思维,必须结合教学内容,有计划、有目的的进行训练,才能培养具有创造力的创新型人才。
九、什么是空间观念?怎么样才能形成学生的初步的空间观念? 1所谓空间观念是指物体的大小、形状及相互位置关系在脑中留下的表象.表象是指过去感知过的事物在脑中留下的映象
2必须重视几何初步知识的教学,让学生通过观察,制作、测量、画图和计算。逐步获得有关物体的形状、大小以及他们相互位置关系的相互表象。.十、怎样结合教学内容对学生进行思想品德教育?
调动学生学习的积极性,教育学生为振兴中华、实现祖国的四个现代化而努力学习数学 通过数学的训练,养成严格对待学习的习惯
重视应用知识的实践活动,突出学习目的学习,数学是学习科学技术必不可少的基础工具
十一、整数教材内容分为哪四个阶段,各阶段的重点是什么?
第一阶段:为二十以内的加减法,重点是一位数的加法和相应的减法,这部分的内容时多位数的计算的基础。
第二阶段:是百以内的乘除法。重点是学好整数乘法和相应处罚,初步掌握口算和笔算加减法。
第三阶段:是万以内的加减乘除的运算,重点是学习笔算加减法和乘除法的一位数的乘法、除法。
第四阶段:是多位数乘除法。重点是乘除数是两三位的乘除法,是对整数四则运算的意义法则和运算性质进行概括提高。
十二、整数在小学教学中的地位如何? 整数在日常生活和生产应用中非常广泛,是解决日常实际计算问题最基本的工具,是每个小学生必须掌握的最起码的基础知识和基本技能。这部分内容是小学阶段学好小数、分数的基础,也是进一步学习数学和其他学科的基础,同时这部分内容是学生学习数学的开始,带有启蒙性质的教育,对学生学习的兴趣和良好的学习习惯的培养关系最大,直接影响到今后的学习,可见整数和整数的四则运算在小学数学中占非常重要的作用。
十三、教材采用什么方法计算20以内的进位加法和退位减法? 采用直观形象的教具让学生感悟认知到进位、退位的形象印象。在运用数的组成进一步加深对进退位的认识。而计算二十以内的进位加法教材采用“凑十法”,退位减法教材采用逆运算方法,利用减法是加法的逆运算关系,用加法计算。
十四、分数教学分为哪两个阶段?每个阶段的重点是什么?
第一阶段:安排在第六册,教学内容时分数的初步认识、简单的加减法,重点是理解分数的意义。
第二阶段:安排在第八、九册,教学内容是使分数的概念、性质、四则运算、百分数、重点是系统掌握分数的概念及运算法则。
十五、教材对代数的初步认识是怎样编排的?教学要求是什么? 对代数初步认识编排运用了数的特点和内容的联系,并考虑到小学生的年龄特征和认识规律,采取算数知识适当配合,在算术知识的基础上逐步引入,在学习运用运算已知数的关系后引入未知数X,并学习简单的方程,在学习整数、小数、四则运算和应用题的基础上,利用四则运算中已知数与得数的关系,学习解答复杂的应用方程和列方程解应用题,学习分数四则运算时,再出现未知数含有分数的方程。教学要求是:①使学生初步了解用字母表示数的意义和作用,初步学会用字母表示常见的数量关系、运算性质和计算公式,并初步能用数值代替式子中的字母进行计算。②使学生理解方程的意义,学会解简易方程③使学生初步学会列方程解一些比较容易的应用题。
十六、应用题是怎样编排的?各年级的教学要求是什么?
应用题的编排是根据应用题之间的内在联系、注意与认数、四则运算的概念和法则相配合,并考虑到晓旭和谁呢过的接受能力,采取数量关系由易到难,解决参数由少到多来安排的。一年级安排加减法、一步应用题,二年级安排了稍复杂的一步应用题和一般的两步应用题,中学生学生的思维有了一定发展,抽象思维能力逐步提高,对两步应用题的结构、特点及解答方法有了一定的基础。所以三年级安排了稍复杂的两步应用题及解决总结一般应用题的步骤和方法,列方程解三步应用题。五年级学生有了一定的数学知识基础,逻辑思维能力有了一定的发展。
五、六年级解一些较复杂的、多步的应用题,学会用比例的知识解答基本应用题,会看地图上的比例尺,进一步提高用算术方法和方程解应用题的能力。
十七、几何初步认识是怎样编排的?教学要求是什么? 小学数学教材对几何初步认识的编排,遵循了形和数的特点和内在联系,又注意了形和数的联系,同时还遵循了儿童的认识规律,由简到繁,由易到难,逐步出现,分散安排在各个年级里。先认识直线和角,再认识各种平面图形,计算这些图形的面积和周长。有了线和面的认识,再认识立体图形,并进行有关计算,从几何知识的内在联系上看,先认识线段和角,主要认识直角,为认识长方形做准备。以后较全面的介绍角的概念并会用量角器量角,为认识三角形打下基础
教学要求是:1掌握常见的平面图形与立体图形的特征,了解各种图形的联系和区别,能够正确理解和识别各种图形,看到或听到某一图形时结合理论想象出图形的表象。2掌握周长、面积、体积、面积单位的大小有明确的观念;3理解并掌握一些常见几何体的周长、面积、体积算法,并正确运用。
十八、“垂线”这节教材要求学生看什么、想什么、折什么、量什么、画什么、都有什么作 要求学生看相交的两条直线组成四个角,想一个角是直角,其他三个角是什么角,这出两条互相垂直的线段,量每一个角是不是直角,画两条互相垂直的线。
作用:为以后学习长方形、正方形以及正方体、长方体的内容打下基础,以及运用于实际生活中。
十九、“长方体和正方体一节”,内容是以什么基础进行教学的,学习这部分内容有何意义? 1这节内容是在学生已学过长方形和正方形的特征以及周长,面积计算等知识的基础上来进行教学的
2学习这部分教材内容的意义在于:1长方体和正方体是最基本的几何体,长方体的体积计算是其他几何体计算的基础2立体图形是平面图形的重要发展,通过教学,对于培养学生发展空间观念有很大的作用。
二十、量的计算的内容分别安排在哪几册书中?为什么这样安排?
第一册、结合整数认识整点钟第二册、结合认数和计算认识货币单位和斤两第三册、长度单位米、厘米、分米的认识第四册千克和公斤的认识第五册公里和吨的认识、时、分、秒的认识第六册结合长方形和正方形的面积计算讲面积单位第七册年、月、日的认识第八册角的度量、丈量土地求面积第九册求多边行面积第十册结合长方体和正方体求体积
二、原因是在量的计量知识中,计算单位的种类较多、每种计量单位又有几个大小不同的单位,各种计量单位间的进率和换算单位又不完全相同,再加上在这方面的感性知识又比较少,建立起各种计量单位的观念比较困难,所以这样安排 二
十一、什么是统计图表?制作统计图表的步骤是什么? 统计图表是把相互关联的统计数字用表格的形式表示出来。、制作统计图表的步骤是:设计1明确编制统计图表的目的,2根据目的和数据设计图表,主要是设计纵标目和横标目,要简略明确层次清楚,使人一目了然3把数据填入适当的栏内,并加以仔细核对4写出标题要简单明了,而且要能反映统计图表的主要内容5注明表内数据的单位名称,数据来源及调查制表的日期 二
十二、概念方面的教材分析举例。
数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中中的反映。数学的研究对象是客观事物的数量关系和空间形式。在数学中,客观事物的颜色、材料、气味等方面的属性都被看作非本质属性而被舍弃,只保留它们在形状、大小、位置及数量关系等方面的共同属性。在数学科学中,数学概念的含义都要给出精确的规定,因而数学概念比一般概念更准确。小学数学中有很多概念,包括:数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。这些概念是构成小学数学基础知识的重要内容,它们是互相联系着的。如只有明确牢固地掌握数的概念,才能理解运算概念,而运算概念的掌握,又能促进数的整除性概念的形成。
在小学数学教材中的概念,根据小学生的接受能力,表现形式各不相同,其中描述式和定义式是最主要的两种表示方式。1.定义式
定义式是用简明而完整的语言揭示概念的内涵或外延的方法,具体的做法是用原有的概念说明要定义的新概念。这些定义式的概念抓住了一类事物的本质特征,揭示的是一类事物的本质属性。这样的概念,是在对大量的探究材料的分析、综合、比较、分类中,使之从直观到表象、继而上升为理性的认识。如“有两条边相等的三角形叫等腰三角形”;“含有未知数的等式叫方程”等等。这样定义的概念,条件和结论十分明显,便于学生一下子抓住数学概念的本质。
2.描述式
用一些生动、具体的语言对概念进行描述,叫做描述式。这种方法与定义式不同,描述式概念,一般借助于学生通过感知所建立的表象,选取有代表性的特例做参照物而建立。如:“我们在数物体的时候,用来表示物体个数的1、2、3、4、5„„叫自然数”;“象1.25、0.726、0.005等都是小数”等。这样的概念将随着儿童知识的增多和认识的深化而日趋完善,在小学数学教材中一般用于以下两种情况。
一种是对数学中的点、线、体、集合等原始概念都用描述法加以说明。例如,“直线”这一概念,教材是这样描述的:拿一条直线,把它拉紧,就成了一条直线。“平面”就用“课桌面”、“黑板面”、“湖面”来说明。
另一种是对于一些较难理解的概念,如果用简练、概括的定义出现不易被小学生理解,就改用描述式。例如,对直圆柱和直圆锥的认识,由于小学生还缺乏运动的观点,不能像中学生那样用旋转体来定义,因此只能通过实物形象地描述了它们的特征,并没有以定义的形式揭示它们的本质属性。学生在观察、摆拼中,认识到圆柱体的特征是上下两个底面是相等的圆,侧面展开的形状是长方形。
;一般来说,在数学教材中,小学低年级的概念采用描述式较多,随着小学生思维能力的逐步发展,中年级逐步采用定义式,不过有些定义只是初步的,是有待发展的。在整个小学阶段,由于数学概念的抽象性与学生思维的形象性的矛盾,大部分概念没有下严格的定义;而是从学生所了解的实际事例或已有的知识经验出发,尽可能通过直观的具体形象,帮助学生认识概念的本质属性。对于不容易理解的概念就暂不给出定义或者采用分阶段逐步渗透的办法来解决。因此,小学数学概念呈现出两大特点:一是数学概念的直观性;二是数学概念的阶段性。在进行数学概念教学时,我们必须注意充分领会。
例如,学习“乘法意义”时,可以从“加法意义”来引入。又如,学习“整除”概念时,可以从“除法”中的“除尽”来引入。又如,学习“质因数”可以从“因数”和“质数”这两个概念引入。再如,在学习质数、合数概念时,可用约数概念引入:“请同学们写出数1,2,6,7,8,12,11,15的所有约数。它们各有几个约数?你能给出一个分类标准,把这些数进行分类吗?你能找出多种分类方法吗?你找出的所有分类方法中,哪一种分类方法是 如,在学习“平均数”时,教师可以先向学生呈现一个“幼儿园小朋友争拿糖果”的生活情境,让学生思考,为什么有的小朋友很高兴,有的小朋友很不高兴?应该怎样做才能使大家都高兴?接下来应该怎么做?这个幼儿园的老师可能会怎么做?
例如,讲授“等腰三角形”概念,教师除了用常见的图形(图6-1(1))展示外,还应采用变式图形(图6-1(2)、(3)、(4))去强化这一概念,因为利用等腰三角形的性质去解题时,所遇见的图形往往是后面几种情形。
(1)什么叫做长方形的周长?什么叫做长方形的面积?
(2)周长和面积常用的计量单位分别有哪些?
(3)在图6—3中,A,B两个图形的周长相等吗?面积相等吗?
(4)图6—4中的每一小方格代表一平方厘米,这个图的面积是,周长是,剪一刀,然后将它拼成一个正方形,这个正方形的周长是,面积是 二
十三、计算方面的教材分析举例。
教材里有三道例题教学除法竖式计算,第1页例题着重解决竖式的结构与计算步骤等问题。例题选择的素材是把46枝铅笔平均分给2个女孩,让学生经历每人先分得2捆再分得3枝,每人得到23枝的操作过程,并理清思路先算40÷2=20,再算6÷2=3,然后把20与3合成23。教材把这些感性认识作为有意义地接受除法竖式的必要基础,在竖式上用两种色块显示分两步除的过程,引导学生把操作经验上升成计算方法。竖式上每一位商的含义及其书写位置很重要,教材由大卡通提出问题“2为什么写在十位上”让学生思考,联系分铅笔的操作理解商的位置。
第7页例题着重解决被除数十位上的余数要和个位上的数合起来继续除的问题。例题的素材是把5筒及2个(即52个)羽毛球平均分给2个班,学生也乐意操作。在操作中他们能先分给每班2筒,再把余下的1筒羽毛球和另外2个合起来继续平均分。在激活了把剩下的12个羽毛球继续平均分这个直接经验的基础上,让学生独立完成竖式计算,进一步理解竖式里被除数十位上余的是1个“十”,可以和个位上的2合成12继续除。第9页例题着重解决商的个位上是0的问题。例题的素材仍然能引发学生动手分一分的积极性,通过操作初步体会商是20,不是2。然后通过竖式计算,进一步理解商的个位上为什么要写0。教材鼓励学生有自己的想法,如2除以3不够商1,所以商0。如果个位上不写0,商就不是20„„只要想法正确都是可以的。二
十四、运算定律方面的教材分析举例。折纸(异分母分数加减法)
4星期日的安排(分数加减混合运算)
分数与小数
2三、单元教材编写特点与教学建议
⒈通过实际操作,探索如何计算异分母分数的加减
为让学生直观地理解异分母分数的加减法,在“折纸”这一课时中,教材安排了学生折纸的活动,通过折纸,提出两个小朋友所用材料是几分之几的问题。随后,教材安排了一组对两部分进行拼图的活动,使学生清晰地看到两部分是如何合起来的。接着,又运用对比的方法,陈述数字符号运算的过程。由于学生有了直观的图像结构,因此,当他们进入数字符号运算时,就能较容易地理解先通分,后运算的道理。同样,对于异分母分数的减法,虽然教材是直接呈现了数字符号的计算方法,但这是根据学生的认知规律而安排的。当然,对不同地区的学生,也可以采用不同的教学设计。如学生认知能力较弱的班级,仍可以运用上述的折纸方法,以帮助学生认识减法的意义与计算方法。
2、以自主探索为主线,引导学生发现分数与小数相互转化的方法
学生自主地探索解决问题的方法,是本套教材编写的重要特点。同样,在本单元的学习中,四个情境的学习内容都具有这样的特点。特别是在“看课外时间”这一课时中,如何进行分数与小数的相互转化,教材并没有用一种硬性的规定进行说明,而是把它放在如何比较两种不同数的活动中。首先,教材提出如何比较两个用不同形式表示时间的数,这是学生第一次碰到类似的问题,需要他们运用已学的知识,寻找解决的途径。其次,教材安排四种探索的具体方法,来说明学生可能在探索中出现的方法。这四种探索的方法,已用比较详细的篇幅来呈现分数是如何化为小数的,以及小数是如何化为分数的。在教学过程中,当学生出现这样的方法,只需要教师适当地指导即可。
案例片断与讨论:分数加减法
案例片断:
教师在黑板上出示一些分数加法的算式,学生任意选择一道进行计算,然后交流。
生:我选择了“1/4+1/2”的这一道题,它的计算过程是:1/4+1/2=2/6。生:我也选择了“1/4+1/2”,计算过程是:1/4+1/2=1/4+2/4=3/4。
生:我选择了“1/8+1/4”的这一道题,它的计算过程是:1/8+1/4=1/8+2/8=3/8。
生:我认为他的计算太复杂,我的计算过程是:1/8+1/4=2/12。
师:你们能不能用一定的方法来验证说明哪一种计算方法是正确的呢?
学生通过折纸、画图等操作活动,分别发现“1/4+1/2”、“1/8+1/4”的结果分别是3/4与3/8。
教师接着追问:那么这个3/4与3/8是怎样得出的呢?
生:我发现了,1/4与1/2在图上是不能直接相加的,因为它们所代表的每一份都不同,只有每份都相同的,才可以相加。
生:刚才这个同学说的每份不同,也就是它们的分数单位不同,所以只有分数单位相同的,才可以相加。
案例讨论:
当学生探索异分母分数的加法时,出现了1/4+1/2=2/6,教师不直接进行纠正,而请学生自己利用直观进行验证,你怎么看待这个做法?你会如何处理?
——教师首先应意识到,学生的这种“错误”有一定的合理性。学生的“错误”也是一种教学资源。
——教师不直接进行纠正,既体现对学生的尊重,又通过延迟判断提供给学生反思的机会。
——可以利用直观操作,也可以通过估算等多种策略发现错误,及时修正。
知识点:方程的解和解方程 例
1、探究形如x+a=b的解法 例
2、探究形如ax=b的解法
例
3、用形如x+a=b解决的实际问题
例
4、用形如ax=b的方程解决的实际问题
稍复杂的方知识点:例
1、列方程解答比一个数几倍多(少)几的数是多 例
2、列方程解含两积之和数量关系的实际 例
3、列方程解含和倍、差倍数量关系的实际 二
十五、应用题方面的教材分析举例。如一年级上册57-58页的练习题 教学目标
1学会使用10以内的加法和减法、解决生活中简单问题,初步感觉加减法与
-
⬬工作计划之家FZ76.coM精选必收:
- 初中数学的教学思想总结 | 论语里仁篇主要思想总结 | 入党思想汇报800篇 | 数学教学总结 | 数学乘方教学思想总结 | 数学乘方教学思想总结
案例研讨:
教师出示课件与问题:小华出生时,脚印的面积约是多少?
学生自己先独立进行估计,然后小组内进行交流。小组推荐人员进行全班交流。
小组1:我们是用数格子的方法来进行计算的,我先数了数整个格子的大约是11个,其他不够一个格子的我进行了拼补,这样大约是17 cm²。
小组2:我们的方法也是这样的,我们把不满一格的按照一格进行计算,这样大约是18 cm²。
师:归纳一下同学们的做法,基本上都是利用数格子的方法进行估计的。同学们还有没有其他的做法?
生1:我把这个脚印看成了近似的长方形,长6厘米,宽3厘米,所以面积是3×6=18(cm²)。(学生在实物投影前画出他看的近似图形,学生们表示
生2:我有个不同的方法,我是看成了近似的梯形,上底是2厘米,下底是3厘米,高是7厘米,根据梯形的面积公式,即(2+3)×7÷2=17.5(cm²)。这样和生1的差不多。
师:回顾一下刚才大家都用了什么方法。
生1:我们用了数一数的方法。
生2:我们把这个脚印看成一个近似图形进行计算。
⬢ 数学乘方教学思想总结
作者:杜延南
**:《新教育时代·学生版》2017年第27期
文摘:教育越来越受到人们的重视,越来越多的科学有效的教学方法被运用到教学中。小学数学的教育是培养学生学习数学兴趣的关键时期,在逻辑性较强,不宜理解的前提条件下,如何做好小学数学教育成为关键问题。
在新课程改革的背景下,如何合理运用数学思想和数学活动开展小学数学教育就是一个简单的分析。
关键词:数学思想、数学活动、小学数学教学
一、数学思想及在教学中的应用
数学思想是人们长久以来对数学了解后得出的高度概括的科学的理论方法,是数学的灵魂所在,主要包括类比、归纳、模型等等。在小学数学教育过程中,有效、合理地运用这些方法,有利于学生的学习和今后的工作。那么如何将这些经过高度概括的抽象的理论思想运用到理解能力不高,逻辑能力较差的小学数学教育中就成为我们能否真正实现这些理论价值的关键。
[1]1.从学习过程中领悟思想的形成过程
科学的理论离不开实际,所有理论的形成都是通过不断积累经验,总结而得出的,科学的数学思维也不例外,所以,小学数学教育这种看起来简单的过程也冲刺着各种真理,所以,教师在授课过程中,要不断的理论联系实际,通过现实中的例子为依据,帮助孩子进行数学学习。例如,在计算十以内加减法时,教师完全可以以实物为引导,通过实物示范,给学生以宏观概念,并通过讲解,让学生了解数学是怎样的一门科学,逐渐引导学生形成正确的数学思维,在生动的实践中,领略数学的奥妙之处。[2]
2.从反复实践中清晰数学思想
在初步了解数学思维之后,教师要提供一个反复实践的过程,通过不断的反思,学生能从实际上升到理论的高度,例如学生刚开始学习加减法时,都会习惯性的借助手指,但通过不断反复的练习之后,他们渐渐理解这种数学的思维方式,并且可以自如运算,通过这种不断的反复练习,他们清晰了数学思维,对其有了更好的理解。[3]
⬢ 数学乘方教学思想总结
有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以教师在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序。有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。一、要求学生深刻理解有理数乘方的意义。即一般地n个相同的`因数相乘。本节课主要有以下转变
1、教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生动手实践发现结论,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课学生与学生,学生与教师之间以“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值在教学上应该抓住以下几点:
一、乘方是一种运算。相当于+、-、×、÷。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的意义与和、差、积、商一样。同时强调具有两种意义,它既表示n个a相乘。又表示乘方的运算结果。
二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,0的任何次幂是正,是0,负数的正数次幂是负数,负数的偶数次幂是正数,教师教学时强调做乘方时先确定符号再计算,
三、教有理数综合运算时应该强调运算顺序。即先算乘方,再算乘除,最后算加减,有括号的先算括号,同时注意教学生的书写格式。分清与的区别。
四、注意讲清有理数乘方中的常见错误。写法不同计算的结果不同。同时分清分数的乘方的书写。与分清小数的乘方的书写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。同时讲清楚区别与联系。
⬢ 数学乘方教学思想总结
1、在新课的情境创设教学中,我利用剪纸与切图让学生的学习兴趣和思考习性得到调动,在通俗生动的生活实例中,学生既可操作也可想象出可以运用的知识,由浅入深地进行阶梯式教学,从而为新知的探究与归纳做好铺垫。在这一环节中,学生的学习兴趣得到了激发,课堂氛围深厚,达到乐中求学的目的。
2、在积的乘方运算法则的学习中,设计由数到字母的算式的计算,让学生探究数学知识由具体到抽象,步步发现计算的规律,从而验证出法则的存在的合理性,满足了学生学习思维的可接受力和可塑造性。学生在这布局中能够发挥个人的能力,对法则的归纳轻松得手。
3、在积的乘方法则的运用中,既练习常规类型习题,又增加公式的逆用习题,环环紧扣,增强了学生的全面发展能力。同时对问题的解答方式既采用口答、抢答,又进行个人独立完成,也运用小组合作,个人讲解的方式,让学生在多种学习方式中学会了知识,掌握了方法,提高了能力,发展了个性。
4、在学生对习题的剖析与讲解中,他们的思维与表达能力还需要不断提高,而老师的引导语言有时也不够精确,筛选的试题代表性不强,方向性不明,今后要全面改进。
⬢ 数学乘方教学思想总结
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题中的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还通过函数与方程的互相转化、接轨,达到解决问题的目的。函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标。
函数是高中数学的重要内容之一,其理论和应用涉及各个方面,是贯穿整个高中数学的一条主线。这里所说的函数思想具体表现为:运用函数的有关性质,解决函数的某些问题;以运动和变化的观点分析和研究具体问题中的数学关系,通过函数的形式把这种关系表示出来并加以研究,从而使问题获得解决;对于一些从形式上看是非函数的问题,经过适当的数学变换或构造,使这一非函数的问题转化为函数的形式,并运用函数的有关概念和性质来处理这一问题,进而使原数学问题得到顺利地解决。尤其是一些方程和不等式方面的问题,可通过构造函数很好的处理。
方程思想就是分析数学问题中的变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。尤其是对于一些从形式上看是非方程的问题,经过一定的数学变换或构造,使这一非方程的问题转化为方程的形式,并运用方程的有关性质来处理这一问题,进而使原数学问题得到解决。
⬢ 数学乘方教学思想总结
有理数的乘方教学反思范文
教学反思需要跳出自我,反思自我。下面是由小编为大家带来的关于有理数的乘方教学反思,希望能够帮到您!
有理数的乘方教学反思一
有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以教师在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序。有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。一、要求学生深刻理解有理数乘方的意义。即一般地n个相同的因数相乘即。a。a。a…a= ,记作。在教学上应该抓住以下几点:
一、乘方是一种运算。相当于“+、-、×、÷”。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的意义与“和、差、积、商”一样。如的结果是8。所以说的幂是8。与2×4一样,2×4=8.所以不能说8是幂,说成23的幂是8。同时强调具有两种意义,它既表示n个a相乘。又表示乘方的运算结果 。
二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,0的任何次幂是正,是0,负数的 正数次幂是负数,负数的 偶数次幂是正数,教师教学时强调做乘方时先确定符号再计算,如 =4.
三、教有理数综合运算时应该强调运算顺序。即先算乘方,再算乘除,最后算加减,有括号的先算括号,同时注意教学生的书写格式。分清与的区别。注意–5的平方与1/2的平方的书写方法。
四、注意讲清有理数乘方中的常见错误。 如 ,的区别。前者是表示2的平方的相反数,后记者是表示–2的平方,写法不同计算的结果不同。同时分清分数的乘方的书写。与分清小数的乘方的书写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。同时讲清楚区别与联系
有理数的乘方教学反思二
有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以我们在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则的分类讨论,有理数乘方的易混淆点三个方面来教学。
一、 要求学生深刻理解有理数乘方的意义。
即一般地n个相同的因数相乘。在教学中,这一部分主要采用学生自学的方式,我通过学案后的`相关问题检测学习的效果。利用学案让学生能自己学会乘方各部分的名称、意义,把学生放在学习的主体地位。我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学.始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.例如,通过实际计算,让学生自己体会到负数的乘方不全是负数,而需要分不同的情况来讨论。
二、特别注意有理数乘方的符号法则的分类讨论。
有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例题中,设计了两组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想.符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显.
三、讲清有理数乘方中的常见易混淆点。
如 与-2 ; 与- 在意义、读法、结果上的区别。最主要的是弄清底数的不同。同时会把他们转换乘法,观察各自的特点,与其他几个的区别。要学生明确写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来学乘方。
⬢ 数学乘方教学思想总结
一、高数教学里的量化指标与线性关系
要将数学建模应用于高等数学教学中,首先,要取得建模所需的一些参数;其次,要分析出各个参数之间的线性关系;然后,才能建立模型的计算公式,并进行测算、校验及修正。
在选取参数之前,我们先要明确我们建立模型的目的。在这里,我们建立数学模型的目的是:建立课堂上的教学质量,与期中期末考试之间的某种联系,从而达到提升考试成绩的目的。
经验表明,教学质量好,学生的整体成绩也会好。如果学生的整体成绩都不尽如人意,那么在教学的过程中就可能出现了问题。如何从细节上及早分析出教学的过程是否出现了问题,将对考试的成绩造成怎样的影响,正是我们建立这一数学模型的目的所在。
二、分析数学建模中的相关参数
我们分析一下在数学模型中将用到的一些量化指标,也就是模型的参数:
(1)学生的上课签到情况;
(2)课堂问答的情况;
(3)作业的情况;
(4)测验的成绩。
这四项参数,与考试的成绩之间,有着某些必然的联系。下面我们对这些参数进行逐项分析:
1.学生上课签到情况。如果签到率达到100%,那么授课是有保障的。反之,如果降为0(当然这是一种极端的情况),那么除非学生自学成才了,否则教学质量将是没有保障的。所以,课堂上的签到情况,与成绩之间,有一个乘数关系。
2.课堂问答。课堂问答,包括学生的主动提问,教师的例行提问以及下课后的一些补充问答。课堂问答的多少,与两方面有关系。第一,是学生的学习积极性。如果学生对学习没有积极性,那么,主动提问的情况就不多。第二,是教学内容的难易度。如果教学的内容很简单,一般学生的提问也相对会减少。所以,对于课堂提问的情况,要一分为二地分析。当课堂提问的数量上升时,既有可能是学生的学习积极性上升,也可能是教学内容相对有难度。学习积极性上升,则成绩有可能提高。但如果是教学内容有难度,则成绩反而有可能下降。因此,对于课堂问答的情况,除了进行纵向对比外,还需进行历史同期数据的横向对比。
所谓纵向对比,就是这一期学生,在学习高数的过程中,各阶段的课堂提问情况。横向对比,则是与前几期学生,以及同期别的班的`学生相比,这一班学生的课堂问答情况。当然,也有可能出现学生不积极提问,同时教学难度也不大的情况。这时候就要用到下一个关键参数——测验。
3.测验的成绩。课堂问答相当于抽检,而测验则是一次小规模的普查。测验的结果可以较为真实的反映出学生的学习成果。不过,测验不可能频繁的进行。因为课时安排主要还是以授课为主。过多的测试,有可能导致本末倒置。
4.作业的情况。除了测试之外,一个比较好的检测学生学习状况的方法,就是作业。大学的作业,由于教学安排的原因,不像中小学作业那样密集。同时,教授的主要工作也不是批改作业。但抽查作业的完成情况,仍然可以对了解学生的学习情况起到一些辅助作用。
三、建立数学模型
分析了数学建模的相关参数,我们就要着手进行数学建模。尽管模型中的几项参数,与考试成绩之间都是乘数关系,但是各项参数之间并不是简单的乘数关系,而是相互有一个比例。所以,在建立模型时,我们采用将参数域对象相乘,然后相加,取和,然后在分析与考试成绩之间的线性关系。
我们设立这样一个方程式:
上课签到情况×参数值A×权重值1+课堂问答情况×参数值B×权重值2+作业情况×参数值C×权重值3+测验情况×参数值D×权重值4=考试成绩。
然后,实际成绩进行比对。
在这个过程中,调整参数对象的值,以及四个权重值,推算出接近于考试成绩的公式,这样就可以建立起一个初步的数学模型。
四、对数学模型进行应用和修正
建立了数学模型后,还需要根据实际的教学情况,进行修正,是数学模型与真实情况相接近,从而对教学工作有真正的应用价值。
当数学模型经过修正逐渐完善后,根据各项教学指标,就可以有预见性地调整教学工作。比如,课堂提问数量的上升,作业的情况良好,则教学情况有可能是在向好的方向发展。反之,就可及时进行调整。比如,增加与学生的交流,看是哪些地方还不尽理解,或者有些什么别的因素在影响,及早排查,从而确保期末考试成绩不出现大的波动,影响教学质量。
通过在高等数学教学中,融入数学建模的思想,我们可以发现,以往那些不太理解的量化指标,确实是与教学质量之间有着必然联系的。通过数学建模,我们不仅促进了对科学化的教学方式的理解,也对数学建模这一工具方法本身,有了更多更深刻的了解。
⬢ 数学乘方教学思想总结
有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以我们在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则的分类讨论,有理数乘方的易混淆点三个方面来教学。
一、 要求学生深刻理解有理数乘方的意义。
即一般地n个相同的因数相乘。在教学中,这一部分主要采用学生自学的方式,我通过学案后的相关问题检测学习的效果。利用学案让学生能自己学会乘方各部分的名称、意义,把学生放在学习的主体地位。我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学。始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上。例如,通过实际计算,让学生自己体会到负数的乘方不全是负数,而需要分不同的情况来讨论。
二、特别注意有理数乘方的符号法则的分类讨论。
有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例题中,设计了两组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想。符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显。
三、讲清有理数乘方中的常见易混淆点。
如 与—2 ; 与— 在意义、读法、结果上的区别。最主要的是弄清底数的不同。同时会把他们转换乘法,观察各自的特点,与其他几个的区别。要学生明确写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来学乘方。
-
推荐阅读:
初中数学的教学思想总结(系列12篇)
中考的数学思想总结(通用十四篇)
七一思想总结(系列十四篇)
八上数学思想总结(系列十七篇)
试用期的思想总结(系列十四篇)
酒驾解教思想总结(系列十四篇)
-
想了解更多数学乘方教学思想总结的资讯,请访问:数学乘方教学思想总结
本文来源://www.fz76.com/gongzuozongjie/145905.html
- 七一思想总结
01-03
- 八上数学思想总结
09-22
- 试用期的思想总结
12-24
- 酒驾解教思想总结
08-22
- 高中历史教学思想总结
06-16
- 初一上数学分类思想总结
03-19
- 数学想象画教学计划
03-02
- 小学数学教育教学总结
01-03
- 职高教学计划数学
05-25
- 学期教学计划
03-14
- 农村青年入党思想汇报
04-21
- 数学教学实践活动总结
04-15
- 蒙氏数学活动总结
11-24
- 初中数学老师教学心得体会
08-12
- 离散思想总结
03-26
- 数学教学总结
11-30
