初中数学圆的知识点归纳总结

时间:2025-04-13 作者:工作计划之家

初中数学圆的知识点归纳总结(集锦5篇)。

在平日的学习中,大家对知识点应该都不陌生吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。为了帮助大家更高效的学习,下面是小编帮大家整理的人教版初中数学圆知识点总结,欢迎阅读与收藏。

初中数学圆的知识点归纳总结 篇1

1、不在同一直线上的三点确定一个圆。

2、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1:

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2:圆的两条平行弦所夹的弧相等

3、圆是以圆心为对称中心的中心对称图形。

4、圆是定点的距离等于定长的点的集合。

5、圆的内部可以看作是圆心的距离小于半径的点的集合。

6、圆的外部可以看作是圆心的距离大于半径的点的集合。

7、同圆或等圆的半径相等。

8、到定点的'距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

12、①直线L和⊙O相交d ②直线L和⊙O相切d=r ③直线L和⊙O相离d>r

13、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

14、切线的性质定理圆的切线垂直于经过切点的半径。

15、推论1经过圆心且垂直于切线的直线必经过切点。

16、推论2经过切点且垂直于切线的直线必经过圆心。

17、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

18、圆的外切四边形的两组对边的和相等外角等于内对角。

19、如果两个圆相切,那么切点一定在连心线上。

20、①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-rr) ④两圆内切d=R-r(R>r) ⑤两圆内含dr)

21、定理相交两圆的连心线垂直平分两圆的公共弦。

22、定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

23、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

24、正n边形的每个内角都等于(n-2)×180°/n。

25、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

26、正n边形的面积Sn=pnrn/2 p表示正n边形的周长。

27、正三角形面积√3a/4 a表示边长。

28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。

29、弧长计算公式:L=n兀R/180。

30、扇形面积公式:S扇形=n兀R^2/360=LR/2。

31、内公切线长= d-(R-r)外公切线长= d-(R+r)。

32、定理一条弧所对的圆周角等于它所对的圆心角的一半。

33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

35、弧长公式l=a*r a是圆心角的弧度数r >0扇形面积公式s=1/2*l*r。

初中数学圆的知识点归纳总结 篇2

一、一次函数图象y=kx+b

一次函数的图象可以由k、b的正负来决定:

k大于零是一撇(由左下至右上,增函数)

k小于零是一捺(由右上至左下,减函数)

b等于零必过原点;

b大于零交点(指图象与y轴的交点)在上方(指x轴上方)

b小于零交点(指图象与y轴的交点)在下方(指x轴下方)

其图象经过(0,b)和(—b/k,0)这两点(两点就可以决定一条直线),且(0,b)在y轴上,(—b/k,0)在x轴上。

b的数值就是一次函数在y轴上的截距(不是距离,有正、负、零之分)。

二、不等式组的解集

1、步骤:去分母(后分子应加上括号)、去括号、移项、合并同类项、系数化为1。

2、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a

A的解集是解集小小的取小

B的解集是解集大大的取大

C的解集是解集大小的小大的取中间

D的解集是空集解集大大的小小的无解

另需注意等于的问题。

三、零的描述

1、零既不是正数也不是负数,是介于正数和负数之间的数。零是自然数,是整数,是偶数。

A、零是表示具有相反意义的量的基准数。

B、零是判定正、负数的界限。

C、在一切非负数中有一个最小值是0;在一切非正数中有一个最大值是0。

2、零的运算性质

A、乘方:零的正整数次幂都是零。

B、除法:零除以任何不等于零的数都得零;零不能作除数;0没有倒数。

C、乘法:零乘以任何数都得零。ab=0a、b中至少有一个是0。

D、加法a、b互为相反数a+b=0

E、减法(比较大小用)a—b=0a=b;a—b0ab;a—b0a

3、在近似数中,当0作为有效数字时,它表示不同的精确度,不能省略。

四、因式分解分解方法

首先提取公因式,然后依次用公式,十字相乘,分组分解法,若都不行,再拆项添项试一试。必须进行到每一个多项式因式不能再分解为止

1、提公因式法

首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的.公因式。

2、公式

a2—b2=(a+b)(a—b)

a2+2ab+b2=(a+b)2

a2—2ab+b2=(a—b)2,还立方差和及其他公式

3、十字相乘

运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解。

将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

①列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数。

4、分组分解法

多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

再提公因式(m+n)

a(m+n)+b(m+n)

=(m+n)?(a+b)。

可见如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

初中数学圆的知识点归纳总结 篇3

一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆

l、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法

反证法的三个步骤:

①假设命题的结论不成立;

②从这个假设出发,经过推理论证,得出矛盾;

③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角

则两个钝角之和>180°

与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系

圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

初中数学圆的知识点归纳总结 篇4

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

棱锥的的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的.中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

esp:

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

初中数学圆的知识点归纳总结 篇5

1、被动学习。许多同学进初中入后,还像小学那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到门道。

2、学不得法。

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、不重视基础。

一些自我感觉良好的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的水平,好高鹜远,重量轻质,陷入题海。到正规作业或考试中不是演算出错就是中途卡壳。

4、思维方式和学习方法不适应数学学习要求。

初二阶段是数学学习分化最明显的阶段。一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的.抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学习接受能力的差异。除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学习方法,促进学生抽象逻辑思维的发展,提高学习能力和学习适应性。

本文来源://www.fz76.com/gongzuozongjie/84641.html