几何|几何 方程思想总结(热门16篇)

时间:2021-04-06 作者:工作计划之家

几何 方程思想总结(热门16篇)。

⧈ 几何 方程思想总结 ⧈

2.1常微分方程建模的应用举例

正如前文所述,常微分方程的思想重点是对那些过程描述的变量问题进行数学建模,从而解决实际的变化问题,这里举一个例子来说明。例1人口数量变化的逻辑斯蒂数学方程模型在18世纪的时候,很多学者都对人口的增长进行了研究,英国的学者马尔萨斯经过多年的研究统计发现,人口的净相对增长率是不变的,也就是说人口的净增长率和总人口数的比值是个常数,根据这一前提条件建立人口数量的变化模型,并且对这一模型进行分析研究,找出其存在的问题,并提出改进措施。解:假设开始的时间为t,时间的间隔为Δt,这样可以得出在Δt的时间内人口增长量为N(t+Δt)-N(t)=rN(t)Δt,由此可以得出以下式子。dN(t)dt=rN(t)N(t0)=N{0(1)对于这种一阶常微分方程可以采用分离变量法进行求解,最终解得N(t)=N0er(t-t0)而后将过去数据中的r、N0带入上述式子中就可以得出最后的结果。这个式子表明人口数量在自然增长的情况下是呈指数规律增长的,而且把这个公式对过去和未来的人口数量进行对比分析发现还是相当准确的`,但是把这个模型用到几百年以后,就可以发现一些问题了,例如到2670年的时候,如果仍然根据这一模型,那么那个时候世界人口就会有3.6万亿,这已经大大的超过了地球可以承受的最大限度,所以这个模型是需要有前提的,前提就是地球上的资源对人口数量的限制。荷兰的生物学家韦尔侯斯特根据逻辑斯蒂数学方法和实际的调查统计引入了一个新的常数Nm,这个常数就是用来控制地球上所能承受的最大人口数,将这一常数融入逻辑斯蒂方程可以得出以下的式子。dN(t)dt=rN(t)(1-N(t)Nm)N(t0)=N{0(2)该方程解为N(t)=Nm1+NmN0e-r(t-t0)一个新的数学模型建立后,首先要做的就是验证它的正确性,经过研究发现在1930年之前的验证中还是比较吻合的,但是到了1930年之后,用这个模型求出的人口数量就与实际情况存在很大的误差,而且这一误差呈现越来越大的变化趋势。这就说明当初设定的人口极限发生了变化,这是由于随着科学技术的不断进步,人们可以利用的资源越来越多,导致人口极限也呈现变大的趋势。

2.2差分方程建模的应用举例

如前文所言,对于离散型问题可以采用差分方程的方法建立数学模型。例如以25岁为人类的生育年龄,就可以得出以下的数学模型。yk+1-yk=ryk(1-ykN),k=0,1,2,…即为yk+1=(r+1)yk[1-r(r+1)Nyk]其中r为固有增长率,N为最大容量,yk表示第k代的人口数量,若yk=N,则yk+1,yk+2,…=N,y*=N是平衡点。令xk=r(r+1)Nyk,记b=r+1。xk+1=bxk(1-xk)这个方程模型是一个非线性差分方程,在解决的过程中我们只需知道x0,就可以计算出xk。如果单纯的考虑平衡点,就会有下面的式子。x=f(x)=bx(1-x),则x*=rr+1=1-1bx因为f'(x*)=b(1-2x*)=2-b,当|f'(x*)|<1时稳定,当|f'(x*)|>1时不稳定。所以,当1<b<2或2<b<3时,xkk→仯仯仭∞x*.当b>3时,xk不稳定。2.3偏微分方程建模的应用举例在实际生活中如果有多个状态变量同时随时间不断的变化,那么这个时候就可以考虑采用偏微分方程的方法建立数学模型,还是以人口数量增长模型为例,根据前文分析已经知道建立的模型都是存在一定的局限性的,对于人类来说必须要将个体之间的区别考虑进去,尤其是年龄的限制,这时的人口数量增长模型就可以用以下的式子来表示。祊(t,r)祎+祊(t,r)祌=-μ(t,r)p(t,r)+φ(t,r)p(0,r)=p0(r);p(t,r0)=∫r2r1β(r,t)p(t,r)d{r其中,p(t,r)主要表示在t时候处于r岁的人口密度分布情况,μ(t,r)表示的r岁人口死亡率,φ(t,r)表示r岁人口的迁移率,β(r,t)表示r岁的人的生育率。除此之外,式子中的积分下限r1表示能够生育的最小岁数,r2表示能够生育的最大岁数。根据人口数量增长的篇微分方程可以看出实际生活中的人口数量与年龄分布、死亡率和出生率都有着密不可分的关系,这与客观事实正好相吻合,所以这一个人口增长模型能够更为准确地反应人口的增长趋势。当然如果把微分方程中的年龄当做一个固定的值,那么就由偏微分方程转化成了常微分方程。另外如果令μ(t,r)=-r,p(t,r)=N(t),N(0)=N0,φ=rN2(t)/Nm,那么上述偏微分方程就变成了Verhulst模型。偏微分方程在实际生活中的应用也相当广泛,物理学、生态学等多个领域的问题都可以通过建立偏微分方程来求解。

⧈ 几何 方程思想总结 ⧈

1 两条直线比斜率:   一条x轴intercede 3,y轴intercede 4, 和一条x轴intercede 4,一个y轴intercede 3   解:slope1=/=-4/3 slop2=/=-3/4

注意由于两条直线的斜率是负数, 后者斜率大一些.

2.直线y+x=4, 与x^2+y=4交点的.距离?

解:meykey:根号2。 4-x=4-x2

3.有一个题目觉得很有意思,就是问y=xx+1和y=x-1的图是下列哪一个?

比较简单。选的是D。

4.一直线在X轴截距为a,Y轴上截距为b,问斜率是多少。

推荐《飞跃常春藤》访谈录

数十位天道学子成功进入常青藤名校的心路历程

解:两点式:列出两点,k=/=-b/a

5.圆里头最长的线段是哪条?

就是直径

6.图中一三角形,X,,Z分别为两个角的外角,Y为第三个内角,问X+Z与180+Y的大小?

解: Y++=180

可退出Y+180= X+Z 所以相等

7.钝角三角形,两短边为6,8,问其面积与24的大小。

解:

8.三角形三边为8,5,6,问5,6 夹角于90谁大?

mykey:前者大.

⧈ 几何 方程思想总结 ⧈

教学目标

学会几何图形的画法。

教学任务

1、学习椭圆、矩形、圆角矩形工具的使用方法。

2、能运用画图工具作简单的规则图形。

教学方法

展示点评

教学重点、难点

“椭圆”、“矩形”、“圆角矩形”等画图工具的使用方法。

教学过程

教学引入

(讲解上节课学生的作业,点评学生的作品)

一、引入

在上课前老师先请你们看一幅画(演示图画),请你们仔细观察一下,这个房子分别是由哪些图形组成的?(长方形、正方形、圆角长方形、椭圆)那我们应该怎样来画这座房子呢?今天我们就来学习。出示课题:画方形和圆形(板书)

二、新课

1.矩形工具(画房子的主体)

首先我们应该画出房子的主体,是一个长方形,我们可以用工具箱中的矩形工具来画。(师演示)

(1)单击工具箱中的“矩形”工具按钮。

(2)在画图区适当的位置按下左键,以确定房子主体的左上角位置,再向右下角拖动,满意后,松开左键,这样房子的主体就画好了。请一位同学上来演示用矩形工具画一扇门。(注意门的位置)问:房子的窗户是什么形状的?正方形我们怎么来画呢?请同学们自己在书上找到答案(读一读)。

在房子主体内确定好窗户的位置后,按下Shift键,再拖动鼠标,满意后松开鼠标,窗户就画好了。

下面请同学们练习,教师巡视指导。

2.圆角矩形工具(画房子的房顶、烟囱)房顶是什么形状的`?

我们可以用工具箱中的“圆角矩形”工具来画。它的画法与“矩形”工具是一样的,谁来试一下,把房顶和烟囱画出来。

学生演示(确定好房顶的位置后,拖动出一个合适的圆角长方形)。

3.椭圆工具(画烟)

烟囱里冒出的烟是椭圆形的,我们可以用工具箱中的“椭圆”工具来画,先单击“椭圆”工具,然后从烟囱口向右上方,分别拖动画出三个椭圆。(师演示)

学生练习(把剩余部分画好)

练习

用多边形工具画出书上p38的图形,保存在指定的文件夹。

⧈ 几何 方程思想总结 ⧈

A、图形的认识

1、点,线,面

点,线,面:

①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:

①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:

①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角

线:

①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。

④经过两点有且只有一条直线。

比较长短:

①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:

①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:

①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:

①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:

①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:

1、对角线相等的菱形

2、邻边相等的矩形

3、相交线与平行线

角:

①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。

②同角或等角的余角/补角相等。

③对顶角相等。

④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。

4、三角形

三角形:

①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

②三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。

③三角形三个内角的和等于180度。

④三角形分锐角三角形/直角三角形/钝角三角形。

⑤直角三角形的两个锐角互余。

⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。

⑧三角形的三条角平分线交于一点,三条中线交于一点。

⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。

⑩三角形的三条高所在的直线交于一点。

图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。

全等三角形:

①全等三角形的对应边/角相等。

②条件:SSS、AAS、ASA、SAS、HL。

勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。

5、四边形

平行四边形的性质:

①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的`线段叫他的对角线。

③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。

平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。

菱形:

①一组邻边相等的平行四边形是菱形。

②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:

①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

梯形:

①一组对边平行而另一组对边不平行的四边形叫梯形。

②两条腰相等的梯形叫等腰梯形。

③一条腰和底垂直的梯形叫做直角梯形。

④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。

多边形:

①N边形的内角和等于(N-2)180度。

②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

平面图形的密铺:三角形,四边形和正六边形可以密铺。

中心对称图形:

①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。

②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

B、图形与变换:

1、图形的轴对称

轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

轴对称图形:

①角的平分线上的点到这个角的两边的距离相等。

②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。

轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。

2、图形的平移和旋转

平移:

①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

旋转:

①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

3、图形的相似

比:

①A/B=C/D,那么AD=BC,反之亦然。

②A/B=C/D,那么A土B/B=C土D/D。

③A/B=C/D=。=M/N,那么A+C+…+M/B+D+…N=A/B。

黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。

相似:

①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。

②相似多边形对应边的比叫做相似比。

相似三角形:

①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。

②条件:AAA、SSS、SAS。

相似多边形的性质:

①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。

②相似多边形的周长比等于相似比,面积比等于相似比的平方。

图形的放大与缩小:

①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

②位似图形上任意一对对应点到位似中心的距离之比等于位似比。

C、图形的坐标

平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。他们分4个象限。XA,YB记作(A,B)。

D、证明

定义与命题:

①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。

②对事情进行判断的句子叫做命题(分真命题与假命题)。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。

公理:

①公认的真命题叫做公理。

②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。

③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。

④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。

⧈ 几何 方程思想总结 ⧈

1.空间几何体的三视图:

定义:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右);俯视图(从上向下)。

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽带;侧视图反映了物体的高度和宽带。

球的三视图都是圆;长方体的三视图都是矩形。

(1)在已知图形中取互相垂直的x轴和y轴,两轴相较于点O。画直观图时,把它们画成对应的x’轴和y’轴,两轴交于点O’,且使

(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画呈平行于x’轴或y’轴的线段。

(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半。

⧈ 几何 方程思想总结 ⧈

【学习目标】

1.整体感知课文,掌握重点词语。(重点)

2.学习本文通过语言、动作、神态等细节描写来刻画人物性格的写作方法。(难点)

3.理解作者对老师深深的敬仰和感激之情。(关键)

【学习重、难点】

学习从不同角度刻画人物形象的方法。

【课时安排】

一课时

【教学过程】

一、检查预习

1.从题目中你获得了哪些阅读信息?

2.了解作者。

3.本文的主要内容是什么?

4.本文有中心句吗?如果有,是什么?

5.检查字词。

(1)给划横线的字注音

须臾( )斜翘( )屏息( )绰号( )

叛逆( )嘈杂( )铭记( )持之以恒( )

(2)理解下列词语

须臾:一会儿,片刻。

得意忘形:形容高兴得失去了常态,忘乎所以。

洗耳恭听:指专心地听。

持之以恒:长久坚持下去。

鸦雀无声:形容非常静。

二、朗读课文,整体感知

1.王几何本来叫什么名字?“王几何”这个绰号是怎么来的?

2.文章共写了老师的几件事,同学们又有什么反应?

三、默读课文,问题探究

1.综合全文看,王老师是一个怎样的人?(分析人物形象)

2.文中除了写王老师外,还多处写了“我们”的反应,有何作用?(分析写作方法)

3.王老师请同学们在黑板上画圆和三角形,用意是什么?

仅仅是为了表现自己的教学功底深吗?文章的这段描写在结构和内容表达上有什么作用?(分析段落作用)

四、自读课文,明确写法

本文的写作特点是什么?(本文成功地塑造了王几何老师,给你留下了难忘的印象。作者运用哪些方法塑造人物形象的?找出来加以品味。)

五、情感体验,拓展延伸

1.说一说

从小到大,哪位老师给你留下了深刻的印象?说说他的'外貌特征,或者他常说的一句话,或者模仿一下他最常做的一个动作,或者叙述一件你与他(她)之间难忘的事。

(老师可以抛砖引玉,先讲一下自己难忘的老师,由此打开话题和思路,否则学生容易受束缚,不知怎么说。目的是为写作文做准备。)

2.写一写

搜寻你印象最深的一位老师,抓住最精彩的一个片段,尝试着用刚学到的刻画人物的方法,写一篇作文,题目是《我心中的良师》。

提示:抓住老师的特点写出老师的与众不同。(说一说你心中的良师是什么样的?)

3.讲一讲

你学完本课的最大收获是什么?(从学到了哪些知识和受到哪些教育入手谈收获)

⧈ 几何 方程思想总结 ⧈

本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。

第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。

第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。

第12~14页全单元内容的整理与练习。

本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。

1?从等式到方程,逐步构建新的数学知识。

方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。

(1)

借助天平体会等式的含义。

等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。

天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

例2继续教学等式,教材的布置有三个特点:

第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。

(2)

教学方程的意义,突出概念的内涵与外延。

“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:

像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。

(3)

用方程表示直观情境里的相等关系。

第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:

一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。

在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。

2?利用等式的性质解方程。

在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的内容,分两段教学:

第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。

(1)

在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。

教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。

例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的`是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+()○20+()。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。

另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。

例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:

一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。

(2)

应用等式的性质解方程。

例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:

只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:

等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:

一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。

协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,

引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。

⧈ 几何 方程思想总结 ⧈

正方形具有平行四边形、矩形和菱形的全部特性。

1、两组对边分别平行;四条边都相等;邻边互相垂直。

2、四个角都是90°,内角和为360°。

3、对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角。

4、既是中心对称图形,又是轴对称图形(有四条对称轴)。

5、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的'夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。

6、正方形是特殊的矩形,正方形是特殊的菱形。正方形具有平行四边形、菱形、矩形的一切性质与特性。

⧈ 几何 方程思想总结 ⧈

世事无常,转瞬即逝!时间是一条由万物堆积而成的河流,一条永不停歇的河流,一条湍急湍急的河流。你刚刚看到了一些东西,它被带走了!紧接着又是一物,而这物终究会被带走!宇宙中,这些东西消失了,时间一长,又被新的记忆所覆盖。有的欢喜迷茫,有的忧愁忧愁,世间就是如此。

人也是如此,人生的起点与终点的距离是多么短啊!想一想,那些浩瀚、无限、无限的时间,它们滚滚而来,滚滚向前。一路匆匆匆匆,一切有形无形之物都被包裹,穿梭于宇宙之中,贪婪、沟壑深沉的欲望、执着于比较的竞争者,全都粉碎成粉末,落入尘土之中,并最终变成虚无。

人的身体只是一股洪流,一切浮华的念头都只是一场梦……

沙发!时间宝贵~~阅读和享受!

分享ErnestoCortazar的歌曲《重逢》(分享自@虾米音乐)

因为这个轻音乐很好听,分享给大家。

音乐家谭盾小时候去美国读书,他妈妈对他说:“不要娶不喜欢艺术的女孩,不要住在不喜欢艺术的家庭,不要去不喜欢艺术的国家。长大后,谭盾觉得母亲的话越来越有道理。责任感。他们充满情感,这就是艺术的伟大力量。”

⧈ 几何 方程思想总结 ⧈

总是会做这样一类的梦:知道这一堂要考试,但是在大楼里上上下下,就是找不到自己的教室。要不然就是进了教室,老师来了,却发现自己从来没上过这么一门课,也没有课本,坐在位子上,心里又急又怕。

还有最常梦到的一种,就是:把书拿出来,却发现上面一个字也看不懂,而其他的人却笃定得很。老师叫我起来,我张口结舌,无法出声。所有的同学都转过头来,用一种冷漠、不屑的眼光看我,使得我在梦里都发起抖来。

醒来的时候常常发现整个人紧张得都僵住了,要好半天才能缓过气来,心里好象压着一块重东西,非要深呼吸几次才能好转,才能完全恢复清醒。醒了以后,在暗暗的夜色里,自己会在床上高兴得笑起来,庆幸自己终于长大了。

终于长大了,终于脱离了苦海了。那个苦海一样的时代,恶梦一样的时代,要上数学、上物理课的时代,我终于不必再回去了。初中二年级,从香港来考联合招收插班生的考试,考上了当时的北二女(现在的中山女高),被分到初二义班,开始了我最艰难困苦的一段日子。奇怪的是,在香港的小学时代。我的脑子对象还可以,算术课也能跟得上,可是,进了北二女后,数学老师教的东西,我没有一样懂。

那是一种很不好受的滋味:老师在台上滔滔不绝,同学在台下听得兴味盎然,只有我一个人怔怔地坐着,面前摆了一本天书。我尽量想看、想听,可是怎么也进不去她们的世界里。我唯一能做的事,就是用一支笔在天书上画图。一个学期下来,画出一本满满都是图面的几何或者代数,让我家里的补习老师叹为观止,还特意拿了一本回去给他的同学看。那些在理工学院读书的男生看过以后,都没有忘记。隔了快二十年的时间,还有人能记得我的名字,还会跑来传诉我,他们当年曾经怎样欣赏过我的数学课本。

当然,在二十年后的相遇里,提起这些事情实在是值得开怀大笑一场的。不过,在那个时候,在我坐在窗外种满了夹竹桃的教室里的那个时候,心情可是完全不一样的。

在那个时候,数理科成绩好的,才能成为同学羡慕的好学生,而文科再好的人,若是数理差,在班上就不容易抬起头来。记得有一次,我得了全初三的国文阅读测验第一名,名宇公布出来,物理老师来上课的时候,就用一种很惋惜的口吻说:

“可惜啊!国文那么通,怎么物理那么不通呢?真是可惜啊!”他一面笑一面摇头。

同学们也都回过头来对我一面笑一面摇头,大概因为我刚得了奖的关系,班上还弥漫着一骰温和友爱的气氛。可是,有一次却不是这样的。

那一次,也是全班都回过头来对我看,我的座位是最后一排最靠窗边的一个位子,数学老师刚刚宣布了全班上一次月考的考试和平常分数,我是最后还没有揭晓的一个人,老师问我:

“席慕蓉,你知道你得了几分吗?”

她的声音很冷,注视着我的眼光也好冷。全班的同学一起回过头来盯着我看,我整个人僵住了,硬着头皮小声地回答:

“不知道。”

“让我告诉你:月考零分,平时零分。”

奏时,四十多个人的眼光里,那种冷漠,那种不屑,那种不耻与我为友的态度都很明白地表示出来了。对一个十二、三岁的女孩来说,实在是需要一点勇气才能承担起那样一种无望与无告的困境的。奇怪的是,本该落泪的我那时并没有流一滴泪,只是低下头来等着那一刹那过去,等着让时间来冲淡一切,补救一切。

表面上,日子是一天一天地过去了,而在夜晚,冰冷的梦境从此一次次地重演,把我拉进了最暗最无助的深渊。

那个时候,好恨老师,也好恨自己。家里为了我,补习老师是不断的。可是,当时没有一个人知道,我是个天生的“数字盲”。假如世界上真有这种病症的话,我就是这种人。和“文盲”不同,文盲只要能受教育,就可以治愈,而数字盲却是永远无药可救的。

跌跌撞撞地混到初三下,数学要补考才能参加毕业考。补考的头一天晚上,知道事态严重,一个晚上不敢睡觉,把一本几何从头背到尾,心里却明白,这样并没有什么用,不过只是尽人事而已。

第二天早上,上数学课时,讲到一半,老师忽然停了下来,说要复习,就在黑板上写了四题让全班演算。我是反正照平常的样子在数学簿子上把数目字乱搬一气,心里却一直惦记者下午的补考。

下课以后,老师走了,班上的同学却闹了起来。她们认为,这四题和正在教的段落毫无关系,没头没脑的四条简单的题目出在黑板上,老师一定别有用心。

数学补考是定在下午第一堂,地点是在另外的一个教室里,我们班上要补考的人有七个,忽然之间成了全班最受怜爱的人物了。

三十几个优秀的同学分成七组,每一组负责教会一个。教了半天没有效果,干脆把四题标准答案写出来教我们背,四题之中,我背会了三题,在下午的补考试卷上得到了七十五分,终于能够参加毕业考,终于毕了业。

那么多年过去了,那天的情景却也始终在我心中。假如说:初中两年的数学课是一场恶梦的话,那么,那最后的一堂课却是一场温馨美丽的记忆。我还记得那些同学一面教我们,一面又笑又叹气的样子,教室里充满了离别前的宽容和依依不舍的气氛,那样真挚的友爱温暖了我的心,使得从来不肯流泪的我在毕业典礼上狠狠地哭了一场。而在讲台上坐着的数学老师和国文老师一样,都在微笑地注视着我,她们一样关切和一样怜爱的眼光,送我离开了我的初中时代。

终于逃脱了那个恶梦,我是绝不肯再回去的了。所以,高中就非要去读台北师范的艺术科不可,因为我仔细查过他们的课程表,一堂数学也没有。

当然,现在有很多人会说:我是从小就喜欢画画,加上初中时美术老师的鼓励,所以毅然决然地选择了这一条路的。其实,事情并不全是这样,我其实并不一定要学画画的。与其说是美术老师鼓励我,倒不如说是数学老师逼着我走上的这一条路,因为,除此以外,我无路可走。

不过,我现在无论怎么向人家解释,人家都不会相信,他们总是微笑地说:

“哪里!你太客气了,你太谦虚了。”

而只有在我常做的那个恶梦里,他们才会相信我,才会一起转过头来,用那种冷冷的眼光注视着我,使我一次又一次地重新掉进那无望无告的深渊。

⧈ 几何 方程思想总结 ⧈

梦随风万里,几度红尘来去。周末说是去龙泉看桃花,其实对我而言,不过换了一个地方做作业而已,还得浪费掉往返路上两小时。我极不情愿地坐在石凳上,泡一碗浓茶,赶紧拿出书、作业本摆满茶桌。尽管蓉城早已换装一派春色,我却浑然不觉。

春绿

才思枯竭、思虑堵塞之际,我偶一扭头,眼睛却定格在了背后的一堵灰白水泥墙上!也许是匠心独运,抑或是偶然天成,水泥墙顶端竟滋生着一丛青绿的爬山虎,参差不齐:感觉时不时还会掉几根下来,叶子愈发浅绿,随风抖动,像一条条绿丝带,勾得人心痒痒,想要触摸一下才作罢!墙的背面不由得引发了我浮想联翩:那里一定早就蓬蓬勃勃,生机盎然了!大片大片绿叶肯定把水泥墙围得水泄不通,才跑到这边来抢占地盘吧!爬山虎看来这名字里的虎字果然名不虚传!以前我总觉得植物怎么叫动物的名字,奇了怪了!现在有些醒悟了!春风又绿江南岸这大好春光又是什么时候降临了蓉城呢?而如今都绿得这般汪洋恣肆了?只是我竟如此后知后觉!

春香

我呡了一口茶,起身信步走到墙后!来不及看传说中的后墙,我的眼睛又被黏着了:莫非我来到了陶渊明的世外桃源?忽如一夜春风来,千树万树桃花开。又或夜来风雨声,花落知多少?几十株桃树婀娜多姿,各领风骚!树枝弯弯曲曲,盘虬卧龙般;枝上朵朵桃花更令人目不暇接。小巧玲珑的桃瓣从外到内,由白渐粉,与黄色的花蕊交相辉映!片片椭圆的桃瓣像仙女用的小碗,微风过处,它们闪动着自己轻盈的身姿,在空中翩翩飞舞一片,两片,三片我好像在花海中旋转,只记得阵阵幽香沁人心脾。我摊开手掌,很快两片桃瓣驻足,那光滑的感觉让我瞬间忘记了烦心事,熨帖了心中的不快!身临仙境,心灵的纯净像那五彩池的水,色彩斑斓却又清澈见底!脚着谢公屐,身登青云梯!驻足良久,忽然想到:植物有植物的语言,它们不在告诉我趁这大好春光多多长叶开花结果吗!

春几何

锦江春色来天地、花重锦官城!回城路上我发现蓉城的绿化越来越美,哪怕立交桥上的一盆盆鲜花都够我们瞄几眼,感受春的心旷神怡!年年岁岁花相似,岁岁年年人不同!人生的春天又有多少呢?春几何,劝君莫虚度!

⧈ 几何 方程思想总结 ⧈

对我来说人生是一场短暂的旅行,也是一部悲剧影片。时而欢乐时而仰天长啸头低泪崩。

时间的飞快让我痛惜不己,拖拉的我总在尝到痛苦后才知到“明日复明日,明日何其多”。人正是这种动物,一种知道害怕才停止的动物。人生如此。我总是站在窗囗望着雨点的落下,转瞬即逝,从天而降至地,人生不就这样快的很。人生几何,一回何,花落花开年复年,就算是何等居士仙人,妖魔鬼怪,无不期昐人生无短。

人生只有一次,可对我来说人生是一场漫长的挑战,人生对于我来说人生最重要的是他的宽度,并非他的长度。

人生似一场梦,短暂的,我的。

我发现过去不能改变,然而我们却可以改变未来。放下吧,过去的以经过去了,未来早以到来,我们更应珍惜当下,并竟当下也只有一次。

人生几何几有一次。过得非快

或许大家都觉得时间有时过的飞快,有时过的比什么都慢正是这样才要珍惜时间。

人生都以飞快的过去正如我现在放暑假了一样子似的,刚刚放学回家到了快开学的几天就似我一般犹如刚放假时的那一天正似好像在昨天,我一定会觉得可怕,因为我又要小心了因为开学了,而闷闷不乐的。我们得为自己时人生负责。现在是上学的时候,该玩的玩,该学时依然要学这才是真正的人生一个为自己负责的人生。

我们应当珍惜当下,把握好自己的人生。

⧈ 几何 方程思想总结 ⧈

教学目标

1.知识与技能

(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;

(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.

2.过程与方法

(1)经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力.

(2)经历问题解决的过程,提高解决问题的能力.

3.情感态度与价值观

(1)积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;

(2)倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.

重、难点与关键

1.重点:从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点.

2.难点:立体图形与平面图形之间的转化是难点.

3.关键:从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键.

教学过程

一、引入新课

1.打开多媒体,播放一个城市的现代化建筑,学生认真观看

2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?

二、新授

1.学生在回顾刚才所看的幻灯片后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验.

2.指定一名学生回答问题,并能正确说出这些几何图形的名称.

教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.

3.立体图形的概念.

(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.

(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)

(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图).

(4)提出问题:在这个幻灯片中,包含哪些简单的`平面图形?

(5)探索解决问题的方法.

①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.

②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.

4.平面图形的概念.

长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.

注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.

5.立体图形和平面图形的转化.

(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,让学生从不同方向看.

(2)提出问题.

从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?

(3)探索解决

问题的方法.

①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.

②进行小组交流,评价各自获得的结论,得出正确结论.

③指定三名学生,板书画出的图形.

6.思考并动手操作.

(1)学生活动:在小组中独立完成课本第119页的探究课题,然后进行小组交流,评价.

(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,并对学生给予鼓励,激发学生的探索热情.

7.操作试验.

(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.

(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?再把展开的纸板复原为包装,体会立体图形与平面图形的关系.

三、课堂小结

1.本节课认识了一些常见的立体图形和平面图形.

2.一个立体图形从不同方向看,可以是一个平面图形;可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.

⧈ 几何 方程思想总结 ⧈

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

1、两组对边平行的四边形是平行四边形。

3、判定:

1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

2、性质:

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

(4)正方形的对角线与边的夹角是45°

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

3、判定:

1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

⧈ 几何 方程思想总结 ⧈

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

数学,古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。

在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

性质是从客观角度认知事物的形式,事物本身所具有的与其他事物不同的根本属性。性质是指从数学概念直接推导得出的运算法则或者运算公式等延伸的知识。判定多用于数学的证明概念,通过事物的本质属性反映出的本质性质,以此作为依据推知下一步结论。

⧈ 几何 方程思想总结 ⧈

一、数学运算

运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习。想清楚再写,少心算,少跳步,草稿纸上也要写清楚。

二、数学基础知识

理解和记忆数学基础知识是学好数学的前提。理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。

三、数学解题

学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。过程。

四、数学思维

数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。

只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好。

    更多精彩的几何,欢迎继续浏览:几何

本文来源://www.fz76.com/gongzuozongjie/135578.html