工作总结|高考数列的函数思想总结(集锦20篇)_高考数列的函数思想总结

时间:2017-10-29 作者:工作计划之家

高考数列的函数思想总结(集锦20篇)。

〚1〛高考数列的函数思想总结

更多高三数学相关内容推荐

高三函数体命题方向

高考函数与方程思想的命题主要体现在三个方面

①是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;

②是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;

③是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。

高三数学函数题答题技巧

对数函数

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

对数函数的图形只不过的指数函数的图形的关于直线y=_的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

高三数学指数函数

指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得_能够取整个实数集合为定义域,则只有使得

可以得到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与_轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与_轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于_轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

高三数学函数奇偶性

一般地,对于函数f(_)

(1)如果对于函数定义域内的任意一个_,都有f(-_)=-f(_),那么函数f(_)就叫做奇函数。

(2)如果对于函数定义域内的任意一个_,都有f(-_)=f(_),那么函数f(_)就叫做偶函数。

(3)如果对于函数定义域内的任意一个_,f(-_)=-f(_)与f(-_)=f(_)同时成立,那么函数f(_)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个_,f(-_)=-f(_)与f(-_)=f(_)都不能成立,那么函数f(_)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(_)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

高三数学函数的性质与图象

复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:

1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.

2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数值和最小值的常用方法.

3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.

这部分内容的重点是对函数单调性和奇偶性定义的深入理解.

函数的单调性只能在函数的定义域内来讨论.函数y=f(_)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.

对函数奇偶性定义的理解,不能只停留在f(-_)=f(_)和f(-_)=-f(_)这两个等式上,要明确对定义域内任意一个_,都有f(-_)=f(_),f(-_)=-f(_)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(_)的图象关于直线_=a对称的充要条件是对定义域内的任意_,都有f(_+a)=f(a-_)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.

这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

〚2〛高考数列的函数思想总结

高考限时训练----数列(45分钟)

一、选择题

1.已知等比数列{a2

n}的公比为正数,且a3·a9=2a5,a2=1,则a1= A.12B.22C.2D.2

2.等差数列a2

n的前n项和为Sn,已知am1am1am0,S2m138,则m

(A)38(B)20(C)10(D)9

3.已知{an}为等差数列,a1a3a5105,a2a4a699,则a20等于

A.1B.1C.3D.7

5.等差数列{an}的前n项和为Sn,且S3 =6,a1=4,则公差d等于

A.1B53C.2D 3

6.等比数列an的前n项和为sn,且4a1,2a2,a3成等差数列。若a1=1,则s4=

(A)7(B)8(C)15(D)16

7.设an是公差不为0的等差数列,a12且a1,a3,a6成等比数列,则an的前n项和Sn=

A.n27nB.n445nC.n3323n

4D.n2n

二、填空题

8.设等差数列an的前n项和为Sn,若S972,则a2a4a99.设等比数列{an}的公比q1

2,前n项和为SS

n,则4

a

10.若数列{an}满足:a11,an12an(nN),则a5

前8项的和S8(用数字作答)

三解答题 11.已知等差数列{an}中,a3a716,a4a60,求{an}前n项和Sn.12.设数列{an}的前n项和为Sn, 已知a11,Sn14an2(I)设bnan12an,证明数列{bn}是等比数列(II)求数列{an}的通项公式

〚3〛高考数列的函数思想总结

(一)、映射、函数、反函数

1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

2、对于函数的概念,应注意如下几点:

(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。

3、求函数y=f(x)的反函数的一般步骤:

(1)确定原函数的值域,也就是反函数的定义域;

(2)由y=f(x)的解析式求出x=f—1(y);

(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。

注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。

②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。

(二)、函数的解析式与定义域

1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:

(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:

①分式的分母不得为零;

②偶次方根的被开方数不小于零;

③对数函数的真数必须大于零;

④指数函数和对数函数的底数必须大于零且不等于1;

⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。

应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。

(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。

已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。

2、求函数的解析式一般有四种情况

(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。

(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。

(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。

(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。

(三)、函数的值域与最值

1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

(3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

2、求函数的最值与值域的区别和联系

求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。

如函数的值域是(0,16],最大值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。

3、函数的最值在实际问题中的应用

函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。

(四)、函数的奇偶性

1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。

2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

注意如下结论的运用:

(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函数的复合函数的奇偶性通常是偶函数;

(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论

(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称。

(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数。

(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立。

(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的.单调性是相同(反)的。

(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(—x)是偶函数,G(x)=f(x)—f(—x)是奇函数。

(6)奇偶性的推广

函数y=f(x)对定义域内的任一x都有f(a+x)=f(a—x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数。函数y=f(x)对定义域内的任—x都有f(a+x)=—f(a—x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

(五)、函数的单调性

1、单调函数

对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数。

对于函数单调性的定义的理解,要注意以下三点:

(1)单调性是与“区间”紧密相关的概念。一个函数在不同的区间上可以有不同的单调性。

(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替。

(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内。

(4)注意定义的两种等价形式:

设x1、x2∈[a,b],那么:

①在[a、b]上是增函数;

在[a、b]上是减函数。

②在[a、b]上是增函数。

在[a、b]上是减函数。

需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零。

(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”。

5、复合函数y=f[g(x)]的单调性

若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减。简称“同增、异减”。

在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程。

6、证明函数的单调性的方法

(1)依定义进行证明。其步骤为:①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论。

(2)设函数y=f(x)在某区间内可导。

如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。

(六)、函数的图象

函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识。

求作图象的函数表达式

与f(x)的关系

由f(x)的图象需经过的变换

y=f(x)±b(b>0)

沿y轴向平移b个单位

y=f(x±a)(a>0)

沿x轴向平移a个单位

y=—f(x)

作关于x轴的对称图形

y=f(|x|)

右不动、左右关于y轴对称

y=|f(x)|

上不动、下沿x轴翻折

y=f—1(x)

作关于直线y=x的对称图形

y=f(ax)(a>0)

横坐标缩短到原来的,纵坐标不变

y=af(x)

纵坐标伸长到原来的|a|倍,横坐标不变

y=f(—x)

作关于y轴对称的图形

【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

①求证:f(0)=1;

②求证:y=f(x)是偶函数;

③若存在常数c,使求证对任意x∈R,有f(x+c)=—f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由。

思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法。

解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1。

②令x=0,则有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),这说明f(x)为偶函数。

③分别用(c>0)替换x、y,有f(x+c)+f(x)=

所以,所以f(x+c)=—f(x)。

两边应用中的结论,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),

所以f(x)是周期函数,2c就是它的一个周期。

〚4〛高考数列的函数思想总结

数列

一、数列

1、定义:按照一定顺序排列起来的一列数。

2、通项公式:

(1)定义:anf(n)

(2)求法:①观察法(注意观察项与项数、项与项、不变项与变项之间的关系)

如:根据数列的前几项,写出下面各数列的一个通项公式:

101,7,13,19,

208,88,888,8888,

301,0,1,0,

① 累加法:如等差数列通项公式的推导

② 累乘法:如等比数列通项公式的推导。

③ 利用Sn与an的关系进行求解

如:已知数列{an}的前n项和为Sn,求{an}的通项公式

10Sn2n23n;20Sn3nb

④ 取倒数

如:数列{an}中,an1an,a12,求a4(提示:通过取倒数构造新数13an

列,判断新数列是特殊数列进而求解)

⑤ 迭代法

已知数列{an}满足a11,an12an1(nN*),求an

法10通过添加项构造新数列:an112(an1),得{an1}是以a112为首项,2为公比的等比数列。

20an12an12(2an11)122an12122(2an21)21=23an222212na12n12n221=

22nn12n212n

1212n11,∴an2n1 1

2⑥ 设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的nN,都

有8Sn(an2)2,求数列{an}的通项公式。

分析:当n2时8Sn1(an12)2,∴有8

(SnSn1)=8an(an2)2(an12)2,∴(a(nan1)(anan14)0又{an}是正数组成的数列,∴anan140,∴anan14,∴{an}是以2为首项,4为公差的等差数列,所以an4n2

一、等差数列

1、定义:从第二项起,每一项与其前一项的差是同一个常数。

符号语言:①an1and(nN);②anan1d(n2,nN); ③an1ananan1(n2,nN)

2、证明一数列是等差数列的方法:如证明数列{3n2}是等差数列。

3、通项公式:ana1(n1)d

①andn(a1d),d0时表示n是 自变量an是函数值的一次函数,点(n,an)(nn)在以d为斜率,a1d为y轴上的截距的直线上,该数列的图象是一群孤立的点组成。

②(n,an),(m,am)(nm)共线,所以danam,从而有anam(nm)d nm

③等差中项:如果三个数x,A,y成等差数列,则三个数的关系是。

4、前n项和

① 推导方法:倒序相加法

举例:

(1)设f(x)

为。122x,则f(5)f(4)f(0)f(5)f(6)的值

(2)若函数f(x)对任意xR,都有f(x)f(1x)

212n1)f(1),数列{an}是等差数列吗?试证10anf(0)f()f()f(nnn

明你的结论。

20若{1}的前n项和为Tn,Tnan1对一切nN都成立,求的取值范anan

1围。

(3)设Sn是等差数列{an}的前n项和,已知S636,Sn324,若Sn4144(n6),则n=.②Snna1n(a1an)n(n1)d 22

121dn(a1d)n 22变形:10Sn

d0时点(n,Sn)都在一个二次函数的图象上。

20Snddn(a1)n22

Sn)(nN)共线 n点(n,思考:等差数列{an}的前m项和为20,前2m项和为100,求它的前3m项和。(用三种方法求解)

5、性质:

①如果m,n,s,tN且满足m+n=s+t,则am,an,as,at之间的关是。如果m,n,tN且满足m+n=2t,则am,an,at之间的关是 ② 若{an}是等差数列,ak,a2k,a3k,, 是否是等差数列?若是,公差是多少?

③ {an}是等差数列,若去掉前面几项,剩余的项组成的数列是否为等差数列? ④ Sn是等差数列{an}的前n项和,Sk,S2kSk,S3kS2k,是否成等差数列? ⑤ 前n项和公式SnAn2Bn(A、B为常数){an}为等差数列

⑥ 三个数成等差数列该如何设最简单(前提知道该三数的和)?四个数成等差数列呢?

⑦ 若等差数列的项数为2n,则有:10S偶S奇S奇S偶。

若项数为2n+1,则有S奇S偶S奇S偶。

如:项数为奇数的等差数列{an}中,奇数项之和为80,偶数项之和为85,求此数列的中间项与项数。

另外常见题型:

1、在等差数列{an}中,已知a120,前n项和为Sn,且S10S15,求当n取何值时,Sn有最大值,并求出它的最大值。

2、数列{an}的数列{an}的前n项和为Sn=100n-n2,(1)判断{an}是否是等差数列,若是,求其首项、公差;

(2)设bn|an|,求数列{bn}的前n项和。

(3)已知等差若m1,mN,且am1am1am0,S2m138,则m等

于。

(4)已知数列数列{an}的前n项和为Sn,且满足

an2SnSn10(n2),a1

10求证:{21 21}是等差数列; Sn

20求an的表达式。

等比数列

一、等比数列

1、定义:从第二项起,每一项与其前一项的比是同一个常数。符号语言:①an1aq(nN);②nq(n2,nN); anan

1③an1an(n2,nN)anan12、证明一数列是等比数列的方法:

3、通项公式:ana1qn

1①anamqnm

③等比中项:如果三个数x,A,y成等比数列,则三个数的关系是。思考:是否是任意三个数都有等比中项?

是否是所有的常数数列都是等比数列?

4前n项和公式

① 推导方法:乘公比错位相减法(思考:该方法适用的范围)123n举例:求和Sn23n aaaa

(q1)na1②Sna1(1qn)(q1)1q

3、性质:

①如果m,n,s,tN且满足m+n=s+t,则am,an,as,at之间的关是。如果m,n,tN且满足m+n=2t,则am,an,at之间的关是 ⑧ 若{an}是等比数列,ak,a2k,a3k,, 是否是等比数列?若是,公比是多少? ⑨ {an}是等比数列,若去掉前面几项,剩余的项组成的数列是否为等比数列? ⑩ Sn是等比数列{an}的前n项和,Sk,S2kSk,S3kS2k,是否成等比数列? ⑪ 三个数成等比数列该如何设最简单(前提知道该三数的积)?四个数成等比数列呢?

另外常见题型:

练习:(1)等比数列{an}中,q2,S9977,求a1a6a99

(2)已知数列{an}是由正数组成的等比数列,且a2a42a3a5a4a625,则a3a5

(3)设等比数列{an}的公比为q(q0),它的前n项和为40,前2n项为3280,且前n项和中数值最大项为27,求数列的第2n项。

数列求和

1、公式法

求和:Sn1111111111111(n个1)

2、错位相减法:

(09山东文)等比数列{an}的前n项和为Sn,已知对任意的nN,点(n,Sn)均在函数ybxr(b0,b1,b,r均为常数)的图象上;

(1)求r的值;

(2)当b2时,记bn

3、倒序相加法

4、裂项相消法

如:在数列{an}中,an

前n项和Tn5、分组法 111如:Sn(x)2(x22)2(xnn)2 xxx6、并项法 12n2,又bn,求数列{bn}的n1n1n1anan1n1(nn),求数列{bn}的前n项和Tn 4an

如Sn15913(1)n1(4n3)

注意各种方法适用的范围。

〚5〛高考数列的函数思想总结

第十六教时

教材:数列极限的定义

目的:要求学生首先从实例(感性)去认识数列极限的含义,体验什么叫无限地“趋

近”,然后初步学会用N语言来说明数列的极限,从而使学生在学习数学中的“有限”到“无限”来一个飞跃。过程:

一、实例:1当n无限增大时,圆的内接正n边形周长无限趋近于圆周长

2在双曲线xy1中,当x时曲线与x轴的距离无限趋近于0

二、提出课题:数列的极限考察下面的极限

1 数列1:

110,111

102,103,,10

n,①“项”随n的增大而减少②但都大于0

③当n无限增大时,相应的项1

n可以“无限趋近于”常数0

2 数列2:123n

2,3,4,,n1,

①“项”随n的增大而增大②但都小于1

③当n无限增大时,相应的项n

n1可以“无限趋近于”常数1

3 数列3:1,11(1)n

2,3,,n,①“项”的正负交错地排列,并且随n的增大其绝对值减小

②当n无限增大时,相应的项(1)n

n

可以“无限趋近于”常数

引导观察并小结,最后抽象出定义:

一般地,当项数n无限增大时,无穷数列an的项an无限地趋近于某

个数a(即ana无限地接近于0),那么就说数列an以a为极限,或者说a是数列an的极限。(由于要“无限趋近于”,所以只有无穷数列才有极限)

数列1的极限为0,数列2的极限为1,数列3的极限为0

三、例一(课本上例一)略

注意:首先考察数列是递增、递减还是摆动数列;再看这个数列当n无限

增大时是否可以“无限趋近于”某一个数。

练习:(共四个小题,见课本)

四、有些数列为必存在极限,例如:an(1)n

或ann都没有极限。例二下列数列中哪些有极限?哪些没有?如果有,极限是几?

1.a1(1)n1(1)n

n22.an2

3.anan(aR)

n

4.a1)n135

n(n5.an5 3

解:1.an:0,1,0,1,0,1,„„不存在极限

2.a2,0,22

n:3,0,5,0,极限为0

3.an:a,a2,a3,不存在极限

4.a,33

n:32,14,极限为0

5.an

5525n:先考察,, 无限趋近于0 3:

392781∴ 数列an的极限为5

五、关于“极限”的感性认识,只有无穷数列才有极限

六、作业:习题1

补充:写出下列数列的极限:1 0.9,0.99,0.999,„„2 a1

n

2n

3 



(1)n113456111n4 2,3,4,5,5 an1242n

〚6〛高考数列的函数思想总结

三角函数在高考中的要求较低,解答题作为第一个题,是绝大多数考生应该得分的一个题。但也有一些考生没有得分或者得分不全,主要有以下几个原因:

一、与其他知识的综合。三角函数考题往往和向量组成一定程度的综合题,但一般是以向量作为一种条件或是一种过度,最终化为三角函数问题来解决,难度不大。要注意和其他的.问题的综合。

一、公式不熟或者不能灵活运用。三角函数的考查主要是公式的考查,不能熟记公式或不能灵活运用公式都将是我们失分的主要原因。

三、方法不能完全到位。在任何一个章节和单元,都有其独特的方法,若不能很好地运用,也将使学生失去主动得分的机会,因此平常训练时要留意。

〚7〛高考数列的函数思想总结

教学准备

教学目标

熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

教学重难点

熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

教学过程

【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。

一、基础训练

1、某种细菌在培养过程中,每20分钟*一次一个*为两个,经过3小时,这种细菌由1个可繁殖成

A、511B、512C、1023D、1024

2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为

A、B、

C、D、

二、典型例题

例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?

评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]

例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?

例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3

例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。

〚8〛高考数列的函数思想总结

目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的`项。

有穷数列、无穷数列。

5.实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集

N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依

次取值时对应的一列函数值,通项公式即相应的函数解析式。

四、补充例题:写出下面数列的一个通项公式,使它的前 项分别是下列

2. , , , ,

5. , , ,

〚9〛高考数列的函数思想总结

一、教材分析

两个重要极限是在学生系统学习了数列极限、函数极限以及函数极限运算法则的基础上进行研究的,它在求函数极限中起着重要作用,也是今后研究各种基本初等函数求导公式的工具,所以两个重要极限应重点研究。

二、学情分析

一方面,学生已经学习了有界函数和无穷小乘积的极限,他们可以通过类比的方法研究这第一个重要极限,具备了接受新知识的基础;另一方面,学生基础比较薄弱,对以前所学的三角函数关系、二倍角公式等运用还不够熟练,所以现在在角的转化上面还存在一定困难。

三、教学目标

根据以上两点分析并结合本节教材的特点,现把本节课的目标、重点、难点定为:

教学目标:

(1)知识与技能:使学生掌握重要极限公式的特点及其变形式,并能运用其求某些函数极限;

(2)过程与方法:提高学生的自学意识,培养学生类比、观察、归纳、举一反三等方面的能力;

(3)情感态度与价值观:通过对重要极限公式的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯,同时激发学生的学习兴趣。

教学重点与难点:

重点:重要极限公式及其变形式

难点:的灵活应用

四、教法与学法的选择

本节课我是以学案为载体,采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

学法上以课前自学为主要方式,在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,让学生自己出题,把思路方法和需要解决的问题弄清。

五、教学环节的设计

(1)课前尝试

利用学案导学,让学生明确课前要做的作业,课堂采用的方法,需要达到的要求,在尝试练习中,让学生通过练习,类比,引入新课。

(2)课堂探究

通过学生探究讨论得出第一个重要极限以及这个极限公式的特点,再由学生举例说明这个重要极限类似的其他形式来认清它的结构特征,讲解这个重要极限的应用时,让学生自己尝试举例,从而使学生达到能够熟练应用举一反三的目的。

(3)课堂巩固

学生在课堂练习中巩固所学内容,从而提升对这一重要极限的认识。

(4)课后拓展

在课后拓展中让学生原有的知识网络的三角函数关系、二倍角公式和函数极限这些没有直接关系的知识,通过这第一个重要极限及其运用牢牢地联系在了一起。

〚10〛高考数列的函数思想总结

作者:郭宝珠

**:《文理导航》2014年第27期

课前思考

“成正比例的量”是人教版六年级下册第三单元教学的内容,这节课是在学生已经认识了比和比例的知识、常见的数量关系的基础上进行编排的。这是一节概念课,通过本节课的学习,帮助学生理解正比例的意义,能找出生活中成正比例量的实例,并能应用知识解决一些实际问题,同时初步渗透函数思想。

本人曾多次执教过这节课,但每次总觉得课堂气氛沉闷,学生的学习积极性不高,学生只是机械的跟着老师完成下面的教学环节:

在例题中展示**,引导学生观察并回答下列问题。

表中有哪两种量?它们是相关联的量吗?

将两个对应的数字分成几组,写出它们的比值,并比较比值的大小。

这两种量成正比例吗?为什么?

思考一“为什么?”——为什么要学习“正、反比例这部分的知识”?在六年级的教学内容中正比例和反比例一直是一个重要的内容,这部分内容肩负了帮助学生完成一次认识上飞跃的重要任务。

学生将从大量对“常量”的认识经验中逐步过渡到认识“变量”,这是函数思想渗透的重要契机。即“学习这部分的知识有助于逐步培养学生的代数思维,更好的实现小学与中学数学学习上的衔接”。

思考二“是什么?”——这一知识的本质是什么?教材中用了一大段语言(共65个字)描述了成正比例的量和正比例关系,其实它就是学生今后要继续学习的正比例函数的雏形,是研究两个相关联的变量之间的一种数学模型。

说到函数,老师们可能并不陌生,虽然小学阶段不出现函数这一概念,但在小学阶段始终都渗透着函数思想,因为有变化的地方都蕴含着函数思想。

思考三“怎么学?”——抓住本质,激活元认知,渗透函数思想。

函数的核心是“把握并刻画变化中的不变,其中变化的是‘过程’,不变的是‘规律’(关系)。”因此要为学生提供熟悉的、直观的情境让学生感悟生活中存在许多变化的量,而这些变化的量又有一定的联系,如一个量的变化会引起另一个量的变化,而我们要**的是相关联的量的“变化规律”。

〚11〛高考数列的函数思想总结

高考数学复合函数知识点归纳

1.复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是

D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

注:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1_2,任一周期可表示为k_1_2(k属于R+)

2.复合函数单调性

依y=f(u),μ=φ(x)的单调性来决定。即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。

⑴求复合函数的定义域;

⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);

⑶判断每个常见函数的单调性;

⑷将中间变量的取值范围转化为自变量的取值范围;

⑸求出复合函数的单调性。

三角函数诱导公式记忆口诀

“奇变偶不变,符号看象限”。“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

三角函数诱导公式大全

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

推算公式:3π/2±α与α的三角函数值之间的关系:

sin(3π/2+α)=-cosα

sin(3π/2-α)=-cosα

cos(3π/2+α)=sinα

cos(3π/2-α)=-sinα

tan(3π/2+α)=-cotα

tan(3π/2-α)=cotα

cot(3π/2+α)=-tanα

cot(3π/2-α)=tanα

两角和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

二倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

tan2α=2tanα/[1-tan2(α)]

tan[(1/2)α]=(sinα)/(1+cosα)=(1-cosα)/sinα

半角的正弦、余弦和正切公式

sin2(α/2)=(1-cosα)/2

cos2(α/2)=(1+cosα)/2

tan2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

万能公式

sinα=2tan(α/2)/[1+tan2(α/2)]

cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

tanα=[2tan(α/2)]/[1-tan2(α/2)]

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin3(α)

cos3α=4cos3(α)-3cosα

tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]

三角函数的和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数的积化和差公式

sinα·cosβ=[sin(α+β)+sin(α-β)]

cosα·sinβ=[sin(α+β)-sin(α-β)]

cosα·cosβ=[cos(α+β)+cos(α-β)]

sinα·sinβ=[cos(α+β)-cos(α-β)]

〚12〛高考数列的函数思想总结

广东高考数列必备知识

广东高考涉及数列的题目通常是一“小”一“大”。

1.小题属于中、低档题,主要考查等差(比)的概念、公式以及性质,复习重点应放在“基本量法”(也俗称“知三求二”)和性质的应用上。

2.大题属于中、高档题,主要考查考生推理论证、抽象概括、运算求解和探究能力。近几年的题目条件主要集中在:(1)已知数列的递推关系式;(2)已知Sn与an的关系式;(3)通过函数关系(或解析几何)建立Sn与an的关系或递推关系等几种形式。考查的问题主要集中在:(1)确定数列的通项公式;(2)证明某些和(积)式的不等关系等。

对于问题(1)的处理,复习重点应放在认真分析递推关系式上,识记能用累加、累乘、倒数法求通项公式的结构特点,掌握形如an1panq(p0且p1,q0)的一阶递推以及其演化的递推式an1panqn和二阶递推式an2pan1qan的用待定系数法构造新等比数列求通项,以及先猜想出通项公式、再用数学归纳法证明的方法。

对于问题(2),复习重点之一:非等差(或等比)数列求和,主要包括:分组求和、裂项求和、错位相减求和等。重点之二:会解决数列中的不等关系,主要方法:①作差(商)法;②构造函数,利用函数的单调性;③分析法;④放缩法;⑤利用基本不等式;⑥反证法以及数学归纳法等。

〚13〛高考数列的函数思想总结

方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。

1.设C为常数,则D(C)=0(常数无波动);

2.D(CX)=C2D(X)(常数平方提取);

3.若X、Y相互独立,则前面两项恰为D(X)和D(Y),第三项展开后为

当X、Y相互独立时,,故第三项为零。

独立前提的逐项求和,可推广到有限项。

方差公式:

(n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)

计算下列一组数据的极差、方差及标准差(精确到0.01).

50,55,96,98,65,100,70,90,85,100.

〚14〛高考数列的函数思想总结

复习课:

数列求和

一、【知识梳理】

1.等差、等比数列的求和公式,公比含字母时一定要讨论.

2.错位相减法求和:如:已知成等差,成等比,求.

3.分组求和:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和.

4.合并求和:如:求的和.

5.裂项相消法求和:把数列的通项拆成两项之差、正负相消剩下首尾若干项.

常见拆项:,,(理科).

6.倒序相加法求和:如等差数列求和公式的推导.

7.其它求和法:归纳猜想法,奇偶法等.

二、【经典考题】

【1.公式求和】例1.(浙江)在公差为的等差数列中,已知,且成等比数列.

(1)求;

(2)若,求.

【分析】第一问注意准确利用等差等比数列定义即可求解,第二问要注意去绝对值时项的正负讨论.

【解答】(1)由已知得到:

(2)由(1)知,当时,①当时,②当时,所以,综上所述:

【点评】本题考查等差数列、等比数列的概念,等差数列通项公式、求和公式等基础知识,同时考查运算求解能力.

变式训练:

(重庆文)设数列满足:,.

(1)求的通项公式及前项和;

(2)已知是等差数列,为前项和,且,求.

【解答】

(1)由题设知是首项为,公比为的等比数列,.

(2),故.

【2.倒序相加法】例2.已知函数.

(1)证明:;

(2)若数列的通项公式为,求数列的前项和;

(3)设数列满足:,若(2)中的满足对任意不小于的任意正整数恒成立,试求的最大值.

【分析】第(1)问,先利用指数的相关性质对化简,后证明左边=右边即可;第(2)问,注意利用(1)中的结论,构造倒序求和;第(3)问,由已知条件求出的最小值,将不等式转化为最值问题求解.

【解答】(1)

(2)由(1)知,,即,又两式相加得,即.

(3)由,知对任意的,则,即,所以.,即数列是单调递增数列.

关于递增,时,.

由题意知,即,解得,的最大值为.

【点评】解题时,对于某些前后具有对称性的数列,可以运用倒序相加法求和.

变式训练:

已知函数.

(1)证明:;

(2)求的值.

【解答】(1)

(2)利用第(1)小题已经证明的结论可知,令,两式相加得:

所以.

【3.错位相减法】例3.(山东理)设等差数列的前项和为,且.

(1)求数列的通项公式;

(2)设数列前项和为,且

(为常数).令,求数列的前项和.

【分析】第(1)问利用等差数列通项公式及前项和公式列方程组求解及即可;第(2)问先利用与关系求出,进而用乘公比错位相减法求出.

【解答】(1)设等差数列的首项为,公差为,由得,解得,.

因此

(2)由题意知:,所以时,故,.

所以,则,两式相减得,整理得.

所以数列数列的前项和.

【点评】用错位相减法求和时,应注意:

(1)要善于识别题目类型,特别是等比数列公比为负数时的情形;

(2)在写出与的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出的表达式;

(3)利用错位相减法转化为等比数列求和时,若公比是参数(字母),一般情况要先对参数加以讨论,主要分公比为和不等于两种情况分别求和.

变式训练:

(山东文)设等差数列的前项和为,且.

(1)求数列的通项公式;

(2)设数列满足,求的前项和.

【解答】(1)同例3.(1).

(2)由已知,当时,当时,结合知,.

又,两式相减得,.

【4.裂项相消法】例4.(广东)设各项均为正数的数列的前项和为,满足,且构成等比数列.

(1)证明:;

(2)求数列的通项公式;

(3)证明:对一切正整数,有.

【分析】本题主要考查利用与关系求出,进而用裂项相消法求出和,然后采用放缩的方法证明不等式.

【解答】

(1)当时,(2)当时,,当时,是公差的等差数列.

构成等比数列,,解得,由(1)可知,是首项,公差的等差数列.

数列的通项公式为.

(3)

【点评】

(1)利用裂项相消法求和时,应注意抵消后不一定只剩第一项和最后一项,也有可能前后各剩两项或若干项;将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.

(2)一般情况下,若是等差数列,则;此外,根式在分母上时可考虑利用分母有理化相消求和.

变式训练:

(大纲卷文)等差数列中,(1)求的通项公式;

(2)设.

【解答】(1)设等差数列的公差为,则

因为,所以.

解得,.

所以的通项公式为.

(2),所以.

【5.分组求和法】例5.(安徽)设数列满足,且对任意,函数

满足

(1)求数列的通项公式;

(2)若,求数列的前项和.

【分析】,由可知数列为等差数列.

【解答】(1)由,得,所以,是等差数列.

而,.

(2),.

【点评】本题主要考查了分组求和法,具体求解过程中一定要注意观察数列通项的构成特点,将其分成等差、等比或其它可求和的式子,分组求出即可.

变式训练:

(2012山东)在等差数列中,.

(1)求数列的通项公式;

(2)对任意,将数列中落入区间内的项的个数记为,求数列的前项和.

【解答】(1)由可得,则,于是,即

(2)对任意,则,即,,.

于是,即.

【6.奇偶项求和】例6.(2011山东)等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.

(1)求数列的通项公式;

(2)若数列满足:,求数列的前项和.

第一列

第二列

第三列

第一行

第二行

第三行

【分析】根据等比数列定义先判断出,求出通项;求和时要对分奇偶讨论.

【解答】(1)由题意知,因为是等比数列,所以公比为,所以数列的通项公式.

(2)解法一:

当时,.

当时,故.解法二:令,即

.【点评】解法一分为奇数和偶数对进行化简求和,而解法二直接采用乘公比错位相减法进行求和,只不过此时的公比

.本题主要意图还是考查数列概念和性质,求通项公式和数列求和的基本方法.

变式训练:

已知数列,求.

【解答】,若,则

三、【解法小结】

1.数列求和的关键在于分析数列的通项公式的结构特征,在具体解决求和问题中,要善于从数列的通项入手观察数列通项公式的结构特征与变化规律,根据通项公式的形式准确、迅速地选择方法,从而形成“抓通项、寻规律、定方法”的数列求和思路是解决这类试题的诀窍.

2.一般地,非等差(比)数列求和题的通常解题思路是:如果数列能转化为等差数列或等比数列就用公式法;如果数列项的次数及系数有规律一般可用错位相减法、倒序相加法来解决;如果每项可写成两项之差一般可用裂项法;如果能求出通项,可用拆项分组法;如果通项公式中含有可用并项或分奇偶项求和法.

四、【小试牛刀】

1.数列前项的和为()

A.

B.

C.

D.

2.数列的前项和为,若,则等于()

A.

B.

C.

D.

3.数列中,若前项的和为,则项数为()

A.

B.

C.

D.

4.(2013大纲)已知数列满足则的前项和等于()

A.

B.

C.

D.

5.设首项为,公比为的等比数列的前项和为,则()

A.

B.

C.

D.

6.(2013新课标)设等差数列的前项和为,则()

A.

B.

C.

D.

7..

8.已知数列,则其前项和为

9.(2013江西)某住宅小区计划植树不少于棵,若第一天植棵,以后每天植树的棵树是前一天的倍,则需要的最少天数等于

10..

11.(2013江苏)在正项等比数列中,,则满足的最大正整数的值为

12.正项数列的前项和满足:

.(1)求数列的通项公式;

(2)令,数列的前项和为.证明:对于任意的,都有.参考答案:

1.B

2.B

3.C

4.C

5.D

6.C

7.8.

9.10.11.,.,..,所以的最大值为.12.(1)由,得.由于是正项数列,所以.于是时,.综上,数列的通项.(2)证明:由于.则..

〚15〛高考数列的函数思想总结

一.幂函数——教学目标:

1.知识技能

(1)了解幂函数的概念;

(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用。

(3)学会研究函数图象和性质的一般方法。

2.过程与方法

类比研究指数函数、对数函数学习过程,掌握幂函数的图象和性质。

3.情感、态度、价值观

(1)进一步渗透数形结合与类比的思想方法;

(2)体会幂函数的变化规律及蕴含其中的对称性,感受数学美。

二、幂函数——教学重难点:

1、重点:幂函数的概念和性质;

2、难点:函数指数的推广及性质的归纳。

三、幂函数——教学辅助工具:

PPT课件,几何画板。

四、幂函数——教学过程:

(一)创设情景

前面我们学习了函数的定义,研究了函数的一般性质,并且研究了指数函数和对数函数。函数这个大家庭有很多成员,今天,我们利用学习指数函数、对数函数的方法,再来认识一位新成员。

1、如果正方形的边长为,那么正方形的面积是= ,是的函数。

2、如果正方体的边长为,那么正方体的体积是 = ,是的函数。

3、如果正方形场地的面积为,那么正方形的边长= ,是的函数。

4、如果某人s内骑车行进了1km,那么他骑车的平均速度= km/s,是的函数。

思考:上述函数解析式有什么共同特征?

答:(1)都是函数;

(2)均是以自变量为底的幂;

(3)指数均为常数;

(4)自变量前的系数为1。

(二)新课导入

1、幂函数的定义:

一般地, 叫做幂函数,其中是自变量,是常数。

2、幂函数与我们之前学过的哪种函数在形式上接近?

3、幂函数与指数函数有什么区别?

答:判断一个函数是幂函数还是指数函数的切入点是看未知数x是做底数还是做指数,若是做底数则是幂函数;若是做指数则是指数函数。

设计意图:引导学生分析掌握幂函数的结构,三要素,区分幂函数与指数函数的异同点。

(三)小试牛刀

1、下列函数中,哪几个函数是幂函数?

① ② ③

④ ⑤ ⑥

2、已知函数是幂函数,则实数的值等于_____.

3、已知幂函数的图象过点,则

(四)自主探究

1、请在同一坐标系内画出幂函数,,,,的图象。

2、观察图象,讨论归纳幂函数;;;;的性质。

定义域

值 域

奇偶性

单调性

定 点

(五)合作探究

归纳幂函数的性质:

(1)幂函数图象过定点 。

(2)函数、、是奇函数,函数是偶函数

(3)幂函数,在第 象限都有图象。我们就先来研究幂函数在第 象限上的性质,函数的奇偶性能够帮助我们完成其他象限的图象。

在区间上,函数、、和是增函数,函数是减函数。

推广:当>0时,函数在第一象限是增函数,当<0时,函数在第一象限是减函数.

(4)在第一象限,函数的图象向上与y轴无限接近,向右与x轴无限接近

设计意图:引导学生类比前面研究一般的函数、指数函数、对数函数等过程中的思想方法研究幂函数;让学生通过观察上述图象,自己尝试归纳五个幂函数的基本性质,然后完成表格;进而归纳幂函数的性质。

(六)反馈演练

例1、证明幂函数上是增函数

证:任取

=

=

因<0,>0

所以,即上是增函数.

例2、比较下列各组中两个值的大小:

(1)与 ;(2)与;(3)与

(4)与.

例3、已知幂函数在上是减函数,求m的取值.

例题的设计意图:

例题1复习函数单调性的证明步骤,例题2复习利用指数函数的图象与性质来比较大小的同时学会用幂函数的方法来比较大小,体会一题多解.例题3学会利用幂函数的性质来解题.

(七)总结提炼

1、谈谈五个基本幂函数的定义域与对应幂函数的奇偶性、单调性之间的关系?

2、幂函数与指数函数的不同点主要表现在哪些方面?

〚16〛高考数列的函数思想总结

2013年高考试题分类汇编——数列

x2x3xn

2013安徽(20)(13分)设函数fn(x)1x22...2(xR,nN),证明:

23n

2(1)对每个n∈N+,存在唯一的xn[,1],满足fn(xn)0;

3(2)对于任意p∈N+,由(1)中xn构成数列{xn}满足0xnxnp2013北京(20)(本小题共13分)

.n

已知an是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an1,an2的最小值记为Bn,dnAnBn.

(Ⅰ)若an为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意nN*,an4an),写出d1,d2,d3,d4的值;

(Ⅱ)设d是非负整数,证明:dndn1,2,3的充分必要条件为an是公差为d的等差数列;

(Ⅲ)证明:若a12,dn1n1,2,3,,则an的项只能是1或者2,且有无穷多项为1.2正项数列{an}的前项和{an}满足:sn(n2n1)sn(n2n)0

(1)求数列{an}的通项公式an;(2)令bn都有Tn

n1*

nN,数列{b}的前项和为。证明:对于任意的,Tnnn22

(n2)a6

42013全国大纲17.(本小题满分10分)

等差数列an的前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求an的通项

式.2013四川16.(本小题满分12分)在等差数列{an}中,a2a18,且a4为a2和a3的等比中项,求数列{an}的首项、公差及前n项和. 2013天津(19)(本小题满分14分)已知首项为的等比数列{an}不是递减数列, 其前n项和为Sn(nN*), 且S3 + a3, S5 + a5, S4 + a4成等差数列.(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设TnSn1(nN*), 求数列{Tn}的最大项的值与最小项的值.Sn

322013陕西17.(本小题满分12分)

设{an}是公比为q的等比数列.(Ⅰ)导{an}的前n项和公式;

(Ⅱ)设q≠1, 证明数列{an1}不是等比数列.2013湖北

18、已知等比数列an满足:a2a310,a1a2a3125。(I)求数列an的通项公式;

(II)是否存在正整数m,使得11a1a211?若存在,求m的最小值;am

若不存在,说明理由。

2013江苏19.(本小题满分16分)

设{an}是首项为a,公差为d的等差数列(d0),Sn是其前n项和.记bnnSn,2nc

nN*,其中c为实数.

(1)若c0,且b1,b2,b4成等比数列,证明:Snkn2Sk(k,nN*);

(2)若{bn}是等差数列,证明:c0.

2013浙江18.(本小题满分14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列

(Ⅰ)求d,an;

(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.

〚17〛高考数列的函数思想总结

错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。

〚18〛高考数列的函数思想总结

1、若 为等差数列,且 则 ;

2、若 为等差数列, 当为奇数时, , ( 中间项),

当n为偶数时, 。

3、若 为等差数列,则连续 项的和组成的数列 仍为等差数列。

4、等差数列 中,若 ,则 , 是其前 项之和,有如下性质,

(2)若 则 ;

(3)若 则 ;

(4)若 ,则 。

5、有两个等差数列 、 ,若 ,则 。

6、若 为等差数列, 为公差,则 。

7、若 、 都是等差数列,公差分别为 、 ,若这两个数列有公共项,则公共项组成的新数列一般仍为等差数列。

8、等差数列 中, (d为公差)。

若公差非零的等差数列 中的三项 构成等比数列,则其公比为: 。

9、等差数列前项和公式 。

10、在等差数列 中,有关 的最值问题常用邻项变号法来求解,分类如下:

(1)当 时,满足 的项数 ,使得 取最大值;

(2)当 时,满足 的项数 ,使得 取最小值;

说明: 存在最大值,只需 , 存在最小值,只需 。

11、若 为等比数列,则连续 项的和组成的数列 仍为等比数列。( )。

12、若 为等比数列,且 则 ;

,

13、若 为等比数列, 、 、 成等差数列,则 、 、 成等比数列,其中 、 、

14、若 为等比数列,则 。

15、若 为等差数列,则 。

16、 ;

;

18、由递推公式求数列通项公式类型与方法归类:

配成 ,等比数列,其中 ;

(2)若 ,考察特征方程, ,设其两根为 ,分类讨论如下:

特别地:选择或填空题中,若所求数列某项的项数较大,且求通项不容易,则该数列可能为周

期数列,可通过归纳求某项。

(1)若 为等差数列, 为等比数列,则数列 前 项的和可用错位相减法求得。

(2)如果一个数列 ,与首末两项等距离的两项之和等于首末两项之和,这样的数列可用倒序相加法求和。

求 的值,就可用倒序相加法求和。

(3)若通项为 个连续自然数积的倒数,则一般可用裂项法求前 项的和。如 是公差为 的等差数列,则有 ,

(4)当一个数列既不是等差数列又不是等比数列时,如果能将这个数列分解为一个等差数列和一个等比数列对应项相加得到的一个新数列,此时可用分组法求和(有时按奇数项和偶数项分组)。

20、数列 是公差非零的等差数列的充要条件是: 是关于 的一次函数,或 是关于 的不含常数项的二次函数。(有时可设 ,若 ,则 是常数列)

21、等差数列 的前 项的算术平均值 是等差数列,等比数列前 项的几何平均值是等比数列。

22、一般地,若 为等差数列, 是 的前 项和,则 也是等差数列。

23、等差数列 中, , 且 ,则使前 项和 成立的最大自然数 是 。

〚19〛高考数列的函数思想总结

高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。

数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。假设M到OP之间的距离为函数f(x),求y=f(x)在的图像形状。”

这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。

根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在的图像形状,如图2,显示的是y=f(x)在的图像。

排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。

排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。例如,题目为“z的共轭复数为z,复数z=1+i,求zz-z-1的值。选项A为-2i、选项B为i、选项C为-i、选项D为2i。”

当我们在解决这个题目时,不仅要对题目已知条件进行合理分析,而且还要对选项进行合理考虑,并根据它们之间的联系进行有效论证。我们可以采取排除法来解决这个问题,已知z=1+i,所以我们可以求出z的共轭复数,由于题目中含有负号,所以我们可以排除B项和D项;然后我们可以将z的共轭复数带进表达式,可得zz-z-1=(1+i)(1-i)-1-i-1=-i,所以我们可以将A项排除,最终选择C项。

三、方程解题法

很多数学题目中有着复杂的数量关系,而且涉及到许多知识点,当我们在解析题目中的数量关系时,如果直接对其数量关系进行分析,不仅增加我们解题过程,还会提高题目整体难度,这样我们就难以理清题目中的各种关系,给我们有效解决题目带来较大麻烦。

数学题目中的各种数量关系大都具有紧密联系,所以我们可以利用方程解题法建立多种数量关系,简化解题步骤,帮助我们更好解决数学问题。例如,题目为“双曲线C的离心率是2,其焦点主要为F1和F2,双曲线C上有一点A,如果|F1A|=2|F2A|,求cos∠AF2F1的值。”

这个问题中存在着较抽象的数量关系,如果直接利用已知条件求cos∠AF2F1的值,不仅会增加我们的解题步骤,而且很容易出现错误,所以我们可以利用方程解题法来解决这个问题。首先,由已知条件双曲线C的离心率是2可得出C=2a;然后可根据双曲线上点A建立表达式,2a=|F1A|-|F2A|,所以可计算出|F1A|=4a,|F2A|=2a,|F1F2|=2c;最后我们可以通过余弦定理建立方程式,

所以最后我们可以得出cos∠AF2F1的值为。

1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。

2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!

3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。省时省力!

4.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!

5.立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!

7.选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案

9.遇到这样的选项A.1/2,B.1,C.3/2,D.5/2这样的话答案一般是D因为B可以看作是2/2前面三个都是出题者凑出来的如果答案在前面3个的话D应该是2(4/2)

〚20〛高考数列的函数思想总结

2012届知识梳理—数列

1a(n2k)112n

(kN*),记bna2n1,1、(河西三模)设数列{an}的首项a1,且an124a1(n2k1)n

4n

1,2,3,(I)求a2,a3;

(II)判断数列{bn}是否为等比数列,并证明你的结论;(III)证明b13b25b3(2n1)bn3.22(Snn)3*

2、(南开二模)已知数列{an}的前n项和为Sn,对于任意的nN,有an

(I)求证:数列{an1}是等比数列,并求{an}的通项公式;(II)求数列{nan}的前n项和Tn3、(和平二模)已知数列{an}满足a1

(I)求{an}的通项公式;

(II)若Tnb12b22(III)设cna11 ,an1ann(nN*),bn2n14an1bn2,求证Tn2; 1,求数列{cn}的前n项和.bnbn

14、(河北一摸)在数列{an}与{bn}中,数列{an}的前n项Sn满足Snn22n,数列{bn}的前n项和Tn

满足3Tnnbn1,且b11,nN*.(I)求{an}的通项公式;

(II)求数列{bn}的通项公式;

(III)设cnbn(an1)2ncos,求数列{cn}的前n项和.n1

3*

5、(南开一摸)设数列{an}满足:nN,an2Sn243,其中Sn为数列{an}的前n项和.数列{bn}满

足bnlog3an.(I)求数列{an}的通项公式;

(II)求数列{cn}满足:cnbnSn,求数列{cn}的前n项和公式.6、(市内六校联考二)已知二次函数f(x)ax2bx的图象过点(4n,0),且f'(0)2n,nN*(I)求f(x)的解析式;(II)设数列满足

1f'(),且a14,求数列{an}的通项公式; anan

(III)记bn

{bn}的前n项和为Tn,求证:Tn2.7、(市内六校联考三)数列{an}的前n项和为Sn,a11,且对于任意的正整数n,点(an1,Sn)在直线

2xy20上.(I)求数列{an}的通项公式;

(II)是否存在实数,使得{Snn

2n

为等差数列?若存在,求出的值,若不存在,说明理由.112n(III)已知数列{bn},bn,bn的前n项和为Tn,求证:Tn.62(an1)(an11)

8、(河东一摸)将等差数列{an}所有项依次排列,并作如下分组:(a1),(a2,a3),(a4,a5,a6,a7),组1项,第二组2项,第三组4项,第n组

2n

1,第一

项.记Tn为第n组中各项和,已知T348,T40.(I)求数列{an}的通项公式;(II)求Tn的通项公式;(III)设{Tn}的前n项的和为Sn,求S8.9、(河西区一摸)已知数列{an}满足a1

(n1)(2ann)

1,an1(nN*)2an4n

ankn

为公差是1的等差数列,求k的值; ann

.1

2(I)求a2,a3,a4;(II)已知存在实数k,使得数列{

(III)记bn

nN*),数列{bn}的前n项和为S

n,求证Sn

10、(和平一摸)在等差数列{an}和等比数列{bn}中,已知a11,a47,b1a11,b4a81(I)分别求出{an},{bn}的通项公式;(II)若{an}的前n项和为Sn,1

1S1S

2

与2的大小; Sn

(III)设Tn

a1a2

b1b2

an*,若Tnc(cN),求c的最小值.bn

2an1(n2k)

11、(红桥区4月)已知数列{an}满足:a11,ann1(kN*),n2,3,4,22an1(n2k1)

2(I)求a3,a4,a5;(II)设bna2n11,n1,2,3,(III)若数列{cn}满足2

2(c11),,求证:数列{bn}是等比数列,并求出其通项公式;

22(c21)

22(cn1)bncn,证明:{cn}是等差数列.12、(河北区二模)已知各项均为正数的数列{an}的前n项和Sn满足6Sn(an1)(an2),且S11(I)求{an}的通项公式;(II)设数列{bn}满足an(2n

b

11)1,记Tn为{bn}的前n项和,求证:3Tn1log2(an3).Sn1Sn2an1,

SnSn1an13、(第二次12校)已知数列{an}的首项a11,a23,前n项和为Sn,且

(nN*,n2),数列bn满足b11,bn1log2(an1)bn。

(Ⅰ)判断数列1{an1}是否为等比数列,并证明你的结论;

n

21),求c1c2c3cn;(II)设cnan(bn2

(Ⅲ)对于(Ⅰ)中数列an,若数列{ln}满足lnlog2(an1)(nN*),在每两个lk与lk1 之间都插入2k1(k1,2,3,kN*)个2,使得数列{ln}变成了一个新的数列{tp},(pN)试问:是否存在正整数m,使得数列{tp}的前m项的和Tm2011?如果存在,求出m的值;如果不存在,说明理由.14、(第一次12校)已知数列{an}的前n项和Sn满足:a(Snan)Sna(a为不为零的常数,aR)

(nN).

(Ⅰ)求{an}的通项公式;(Ⅱ)设cnnan1,求数列{cn}的前n项和Tn;(Ⅲ)当数列{an}中的a2时,求证:

2222232n

1. 15(a11)(a21)(a21)(a31)(a31)(a41)(an1)(an11)

315、(五校联考)在数列an中,a1

a211,an1n,nN 7an

(I)令bn

1,求证:数列bn是等比数列;(II)若dn(3n2)bn,求数列dn的前n项

an2

3

和Sn;(Ⅲ)若cn3nbn(为非零整数,nN)试确定的值,使得对任意nN,都有cn1cn成立.

16.(津南区一模)等比数列{an}为递增数列,且a4(I)求数列{bn}的前n项和Sn及Sn的最小值;

a220*,a3a5,数列bnlog3n(nN)39

2(II)设Tnb1b2b22b2n1,求使Tn5n320成立的n的最小值. 17、(河东二模)已知数列{bn}(nN)是递增的等比数列,且b1b35,b1b3

4(1)求数列{bn}的通项公式;(2)若数列{an}的通项公式是ann2,数列{anbn}的前n项和为sn,求sn

18、(河西二模)已知曲线C:yx2(x0),过C上的点A1(1,1)做曲线C的切线l1交x轴于点B1,再过点

B1作y轴的平行线交曲线C于点A2,再过点A2作曲线C的切线l2交x轴于点B2,再过点B2作y轴的平

行线交曲线C于点A3,……,依次作下去,记点An的横坐标为an(nN)

(1)求数列{an}的通项公式;(2)设数列{an}的前n项和为sn,求证:ansn1;

14n

1(3)求证: 

3i1aisi

n

19.(09天津文)已知等差数列{an}的公差d不为0,设Sna1a2qanqn1

Tna1a2q(1)n1anqn1,q0,nN*

(Ⅰ)若q1,a11,S315 ,求数列{an}的通项公式;(Ⅱ)若a1d,且S1,S2,S3成等比数列,求q的值。(Ⅲ)若q1,证明(1q)S2n19、(2010文)在数列an

2dq(1q2n)*

(1q)T2n,nN2

1q

中,a10,且对任意kN*,a2k1,a2k,a2k1成等差数列,其公差为2k.的通项公式;

(Ⅰ)证明a4,a5,a6成等比数列;(Ⅱ)求数列an

32232n2

(Ⅲ)记Tn……+,证明2nTn2(n2).2a2a3an

20.(2011文)已知数列{an}与{bn}满足bn1anbnan1

3(1)n1

(2)1,bn,nN*,且a12.n

(Ⅰ)求a2,a3的值;(Ⅱ)设cna2n1a2n1,nN*,证明{cn}是等比数列;(Ⅲ)设Sn为{an}的前n项和,证明

S1S2

a1a2

S2n1S2n1

n(nN*).a2n1a2n3

本文来源:https://www.fz76.com/gongzuozongjie/99921.html